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What is in this course:

• The basics of affine and projective algebraic geometry, over C.

What is not in this course:

• Algebraic geometry over fields which aren’t algebraically-closed or have
finite characteristic.

1



• Proofs of the commutative algebra theorems (Nullstellensatz etc.).

• Intersection theory/Bezout’s theorem.

• Sheaves.

• Schemes.

I Affine varieties

1 Introduction

Algebraic geometry is about studying spaces which are the solution sets to
polynomial equations, we call these spaces algebraic varieties. We’ll see lots of
interplay between the algebraic properties of polynomials, and the geometric
properties of varieties. Here’s a very simple example of an algebraic variety:

V =
{

(x, y) ∈ R2, x2 + y2 − 1 = 0
}

Obviously V is a circle. The equation defining V is a quadratic polynomial in
two variables, and we’ve looked at its real solutions. But we could instead look
at its complex solutions, and we’d get a different variety:

VC =
{

(x, y) ∈ C2, x2 + y2 − 1 = 0
}

It’s not so obvious what VC looks like, because C2 is 4-dimensional (over R) and
VC is a 2-dimensional surface sitting inside it. But things become clearer if we
make the co-ordinate change

x̂ = x+ iy, ŷ = x− iy

because then:

VC =
{

(x̂, ŷ) ∈ C2, x̂ŷ − 1 = 0
}

= {(z, z−1), z ∈ C \ 0}

We see that VC is a copy of the complex numbers with zero deleted. Our real
solutions V sit inside as the unit circle in C.

We could also look at the real solutions to this new polynomial:

W =
{

(x̂, ŷ) ∈ R2, x̂ŷ − 1 = 0
}

This is a hyperbola. It looks very different from V , but they are just two
different ‘slices’ through the complex variety VC.

This example demonstrates that it’s generally easier to work over the com-
plex numbers, and we’re going to do so for the whole course. If you want to get
a picture of an algebraic variety then it’s sometimes helpful to think about the
set of real solutions, but it can also be misleading!

We’ve looked at the solutions to x2 + y2 − 1 = 0 over R and C, but in fact
(since this polynomial has integer coefficients) it would make sense to look at
the solutions over any field K, for example a finite field. This is part of the
point of algebraic geometry, and although we’re going to stick to C we’re only
going to do things which are ‘algebraic’, which means they could be done over
any field if we wanted to.
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2 First examples

Definition 2.1. An affine variety is a subset of Cn of the form

V = {f1(x) = f2(x) = ... = fk(x) = 0} ⊂ Cn

where f1, ..., fk ∈ C[x1, ..., xn] is a finite list of polynomials in n variables.

The usual notation for a set of this form is:

V (f1, ..., fk)

The ‘V ’ stands for ‘vanishing locus’ (or maybe ‘variety’).
A nice feature of this definition is that it’s very easy to write down examples.

Example 2.2. Set n = 1.

1. The polynomial equation x = 0 has a single solution, so V (x) ⊂ C is a
single point, the origin.

2. If we fix a complex number λ ∈ C, then V (x − λ) is the single point
{λ} ⊂ C.

3. The polynomial x2 − x has two roots, so V (x2 − x) = {0, 1} ⊂ C consists
of two points.

In general, a degree d polynomial f ∈ C[x] has at most d roots, so V (f) ⊂ C is a
finite set of size at most d. It follows that an affine variety in C must be a finite
set (since adding more polynomials will only make the solution set smaller).
Moreover every finite set in C is an affine variety, because {λ1, ..., λd} ⊂ C is
exactly the vanishing locus of the polynomial:

f(x) = (x− λ1)(x− λ2)...(x− λd)

4

Example 2.3. Set n = 2.

1. The equations x = y = 0 cut out a single point, so V (x, y) = {(0, 0)} ⊂ C2.

2. V (y − 3x+ 1
2 ) ⊂ C2 is a straight line.

3. We studied V (xy − 1) ⊂ C2 in the introduction, this in an example of a
conic.

4. Fix a, b ∈ C. Subsets of the form

V (y2 − x3 − ax− b) ⊂ C2

are called (affine) elliptic curves and are very interesting!

If f ∈ C[x, y] is a polynomial in two variables then the affine variety V (f) ⊂ C2

is called a plane curve. As you can see from the previous three examples, the
shape of V (f) gets more complicated as the degree of f increases. 4

Perhaps surprisingly, linear algebra can produce some interesting examples
of affine varieties.
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Example 2.4. Let Mat3×3(C) be the set of 3 × 3 complex matrices. It’s a
9-dimensional complex vector space, so we can identify it with C9. Now let

V = {M ; det(M) = 0} ⊂ C9

be the subset of singular matrices. The determinant function here is a (cubic)
polynomial, so V is an affine variety. 4

Note that Cn itself is an affine variety, it’s the vanishing locus of no poly-
nomials - or if you prefer, it’s the vanishing locus of the zero polynomial 0 ∈
C[x1, ..., xn].

An affine variety V (f) ⊂ Cn defined by a single polynomial is called a hy-
persurface. Many of our examples will be hypersurfaces because they’re simpler
to work with.

Before we do any general theory, let’s develop a little intuition about what
affine varieties can look like. In the introduction we considered two affine vari-
eties over R:

V (x2 + y2 − 1) ⊂ R2 and V (xy − 1) ⊂ R2

The first one is bounded (it’s a circle) and the second is not (it’s a hyperbola).
Over C these two equations are just related by a co-ordinate change, and the
complex affine variety V (xy − 1) ⊂ C2 is not bounded. Are there any complex
affine varieties that are bounded? The answer is basically no.

Lemma 2.5. Assuming n ≥ 2, a hypersurface V (f) ⊂ Cn cannot be bounded.

So the points in V (f) always ‘go out to infinity’.

Proof. Fix x2, ..., xn to be any complex numbers (as large as you like). Then
f(x1, x2, ..., xn) becomes a polynomial in one variable x1, and by the Funda-
mental Theorem of Algebra it has a root.

Of course for n = 1 the hypersurface V (f) is a finite set, which is bounded.
The general result is that an affine variety V ⊂ Cn can only be bounded if
it is a finite set, but this is surprisingly tricky to prove (and we won’t). This
result is not true over R, and this is one reason why looking at real solutions
can sometimes be misleading.

Notation: From now on, we’re going to write An instead of Cn when talking
about affine varieties.

This ‘A’ stands for affine. This is standard notation, and there are two
reasons for it:

(1) It doesn’t force you to specify which field you’re using. Really Cn =
An(C), and Rn = An(R), etc. But since we’re always going to work over
C we’ll just write An instead of An(C).

(2) We want to emphasize that we are not interested in the vector space
structure on Cn. For example, we don’t consider there to be anything
special about the origin in An, we can apply translation maps to move it to
any other point, c.f. Example 2.2(ii). More generally we are ‘allowed’ non-
linear (polynomial) changes of co-ordinates on An; if we cared about the
vector space structure then we would only be interested in linear changes
of co-ordinates.
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Example 2.6. Let V = V (y − x2) ⊂ A2, this is the graph of the function
x 7→ x2. Now change co-ordinates to:

x̂ = x, ŷ = y − x2

Note that this transformation is invertible, and sends polynomials to polynomi-
als. In the new co-ordinates V becomes

W = V (ŷ) ⊂ A2

which is just the x̂-axis. We view V and W as being essentially ‘the same’ affine
variety. We’ll learn how to say this precisely later. 4

Now one easy general result.

Lemma 2.7. Let V = V (f1, ..., fk) and W = V (g1, ..., gm) be two affine varities
in An. Then:

(i) V ∩W ⊂ An is an affine variety.

(ii) V ∪W ⊂ An is an affine variety.

Proof. (i) V ∩W is exactly V (f1, ..., fk, g1, ..., gm) ⊂ An.

(ii) Exercise.

Observe that any single point p = (p1, ..., pn) ∈ An is an affine variety,
since it’s the vanishing locus of the polynomials x1 − p1, ...., xn − pn. It follows
immediately (by part (ii) of the Lemma) that any finite set in An is an affine
variety.

3 Ideals

Obviously, the polynomials defining an affine variety are not unique.

Example 3.1. The origin {(0, 0} ∈ A2 is V (x, y), but it’s also V (2x, x+y). 4

Suppose we pick polynomials f1, ..., fk, and consider the variety V = V (f1, ..., fk).
Each polynomial fi vanishes identically on V . What other polynomials vanish
on V ? This is a difficult question, but it is obvious that any polynomial of the
form

f = g1f1 + ...+ gkfk

vanishes on V , where g1, ..., gk are any polynomials at all. In other words, if f
lies in the ideal

〈f1, ..., fk〉 ⊂ C[x1, ..., xn]

generated by f1, .., fk, then f vanishes on V .

Lemma 3.2. Suppose f1, ..., fk and g1, ..., gm generate the same ideal:

〈f1, ..., fk〉 = 〈g1, ..., gm〉 ⊂ C[x1, ..., xn]

Then V (f1, ..., fk) = V (g1, ..., gm) ⊂ An are the same affine variety.
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Proof. Each gi lies in 〈f1, ..., fk〉, so each gi vanishes along V (f1, .., fk). This
means that the common vanishing locus of the gi includes the subset V (f1, ..., fk),
i.e.

V (f1, ..., fk) ⊂ V (g1, ..., gm)

By symmetry the reverse inclusion also holds.

So an affine variety doesn’t depend on the specific polynomials you chose, but
only on the ideal they generate. So we’d like to be able to say that affine variety
in An is something that comes from an ideal I ⊂ C[x1, ..., xn], by defining:

V (I) = {x ∈ An, f(x) = 0 ∀f ∈ I}

If I is the ideal generated by f1, .., fk then this definition gives exactly V (f1, .., fk).
However, what if we find an ideal I which cannot be generated by a finite list

of polynomials? Then V (I) cannot be described by a finite list of polynomial
equations, so it isn’t an affine variety (at least under our definition). Fortunately,
this will never happen.

Theorem 3.3 (Hilbert Basis Theorem). Every ideal in C[x1, ..., xn] is finitely
generated.

This is very important theorem in algebra, and not too difficult, but we’re
not going to give the proof.

Remark 3.4. • A ring R with the property that all ideals in R are finitely-
generated is called Noetherian (after Emmy Noether). It is one of the most
important conditions that can be put on a ring, it’s a bit like assuming
your vector space is finite-dimensional.

• The Hilbert Basis theorem is actually true over any field, not just C.

So there is no problem with the definition V (I) written above, and any ideal
I gives us an affine variety. We can always pick a finite list of polynomials that
generate the ideal, then we get a finite list of equations defining V (I).

Notice that this procedure I 7→ V (I) is order-reversing : if J ⊂ I are two
ideals then V (I) ⊂ V (J). If we impose fewer polynomial equations then we get
a larger set of solutions.

By Lemma 2.7, if we have a finite collection of affine varieties in An then the
intersection of all of them is an affine variety, and the union of all of them is an
affine variety. The Hilbert Basis Theorem let’s us extend the first statement to
infinite collections.

Corollary 3.5. Let S be any set, and let

Vs = V (fs,1, ..., fs,ks) ⊂ An, s ∈ S

be a collection of affine varieties indexed by S. Then the intersection

V =
⋂
s∈S

Vs ⊂ An

is an affine variety.

Proof. V is the vanishing locus of the set of polynomials
⋃
s∈S{fs,1, ..., fs,ks}.

This set generates some ideal I, and then V = V (I).
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However, the union of an infinite collection of affine varieties may not be an
affine variety (exercise).

Now let us return to the question raised earlier: if V = V (f1, .., fk), which
polynomials vanish on V ? We denote this set of polynomials by IV :

IV = {f ∈ C[x1, ..., xn], f |V ≡ 0}

It is trivial to check that IV is an ideal in C[x1, ..., xn]. Also notice that the
proceduce V 7→ IV is again order-reversing: if V ⊂ W are two affine varieties
then IW ⊂ IV , since any polynomial that vanishes on W must in particular
vanish along V .

We know that 〈f1, ..., fk〉 ⊂ IV , but is this the whole of IV ? The answer is
no.

Example 3.6. Let V = V (x2) ⊂ A1. Then V consists of the single point
0 ∈ A1, and the polynomials that vanish on V are exactly the polynomials
divisible by x, i.e.

IV = 〈x〉

This is strictly bigger than the ideal 〈x2〉, for example x /∈ 〈x2〉. 4

Of course the above example looks stupid, we should have defined V as V (x)
instead of V (x2). But we must accept the possibility of stupidity!

Definition 3.7. Let R be any ring, and I ⊂ R an ideal. The radical of I is
the subset:

rad I = {r ∈ R, rk ∈ I for some k ∈ N}

This is subset is in fact an ideal of R (exercise). If I = rad I then we call it
a radical ideal.

If V = V (f1, ..., fk) is an affine variety, it is clear that the radical of 〈f1, ..., fk〉
is contained in IV . The next theorem says that in fact it is the whole of IV .

Theorem 3.8 (Hilbert’s Nullstellensatz). Let V = V (f1, ..., fk) ⊂ An be an
affine variety. Then:

IV = rad〈f1, ..., fk〉

This theorem is one of the foundation stones of algebraic geometry. It means
that there is an (order-reversing) bijection:

Affine varieties in An ←→ Radical ideals in C[x1, ..., xn]

V 7→ IV

V (I) ← [ I

We can freely translate between geometry (varieties) and algebra (ideals).

The Nullstellensatz is a more subtle result than Hilbert’s Basis Theorem, it
does work when C is replaced by another field K, but only if we assume that K
is algebraically closed. It is not too hard to prove if you assume that your field
is uncountable (like C), but the proof for countable algebraically-closed fields
(like Q) is quite long.

We are not going to discuss the proof, but we will quickly look at two ex-
amples that demonstrate why the result is less obvious than it might appear at
first.
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Example 3.9. For this example we work with the field R instead of C, so now
A1 means R not C. Since R is not algebraically closed we can’t expect the
Nullstellensatz to hold, and it doesn’t. Consider:

V = V
(
x3 + x

)
⊂ A1

The only real root of this polynomial is at zero, so V is a single point {0}, and

IV = 〈x〉 ⊂ R[x]

But x is not in the radical of 〈x3 + x〉.
For an even worse example, consider W = V (x2 + 1) ⊂ A1. This variety

is empty! So IW = R[x], since asking for a polynomial to vanish along W is a
vacuous condition. But the radical of 〈x2 + 1〉 is not the whole of R[x]. 4
Example 3.10. In this example we work over the finite field Fp of order p, so
A1 means Fp, which is a finite set. Again Fp is not algebraically closed, and
Nullstellensatz does not hold.

Let V = A1 itself, so V = V (0) for the zero polynomial 0 ∈ Fp[x]. The zero
polynomial generates the zero ideal 〈0〉 ⊂ Fp[x], and this is a radical ideal.

However, there are some non-zero polynomials which vanish on every point
in V . For example

f(x) = x(x− 1)(x− 2)...(x− p+ 1)

(in fact this f generates IV ). 4
Over C this kind of nonsense does not happen, and this is one of the main

reasons we are working with C in this course.

Corollary 3.11. Let V be a hypersurface V = V (f) ⊂ An where f is an
irreducible polynomial. Then IV = 〈f〉.
Proof. Nullstellensatz says that IV = rad〈f〉, which is the set of polynomials g
such that f divides gk for some k. But recall that C[x1, ..., xn] is a UFD, so if
f is irreducible then f |gk implies f |g.

Remark 3.12. More generally, suppose V = V (f) is a hypersurface defined by
reducible polynomial. Factorize f as f = gm1

1 ...gmk

k where the gi are irreducible
and distinct, and let g = g1...gk. It’s easy to check that rad〈f〉 = 〈g〉, so
IV = 〈g〉.

Here is another easy corollary of Nullstellensatz which is sometimes useful:

Corollary 3.13 (Weak Nullstellensatz). If V (f1, ..., fk) is empty then there
exist polynomials g1, .., gk such that:

g1f1 + ...+ gkfk = 1

This may remind you of Bezout’s Lemma.

Proof. Since V = V (f1, ..., fk) is empty every polynomial vanishes on V , hence
by Nullstellensatz:

rad〈f1, ..., fk〉 = IV = C[x1, .., xn]

In particular 1 ∈ rad〈f1, ..., fk〉, which implies that 1 ∈ 〈f1, ..., fk〉.

In fact the ’strong’ Nullstellensatz can also be proved from the ’weak’ version
fairly easily, but we won’t give the argument for that either.
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4 Rings

Definition 4.1. Let V ⊂ An be an affine variety. A function f : V → C is
called a regular function if there exists a polynomial f̂ ∈ C[x1, ..., xn] such
that

f = f̂ |V

Regular functions are the most obvious ‘algebraic’ functions we can consider
on an affine variety. The word ‘regular’ is to distinguish them from rational
functions which we’ll meet later.

Given a regular function f , the polynomial f̂ defining it is not unique. In
fact, two polynomials f̂ , ĝ define the same regular function iff f̂ |V = ĝ|V (by
definition), which holds iff:

(f̂ − ĝ)|V ≡ 0

In other words, they define the same regular function iff f̂ − ĝ lies in the ideal
IV . So the set of all regular functions on V , which we denote by C[V ], is exactly
the quotient ring:

C[V ] = C[x1, ..., xn]/IV

This called the ring of regular functions or the co-ordinate ring of V .

We’ve now associated two possible algebraic objects to an affine variety V :
the radical ideal IV , and the co-ordinate ring C[V ]. The ring is the more useful
one.

We shall see later that the co-ordinate ring completely determines the variety.
This is a very important observation, it means that algebraic geometry has a
dual interpretation as a kind of ring theory. Everything we do in algebraic
geometry can be viewed either geometrically, or algebraically.

Unfortunately not every ring can occur as the co-ordinate ring an affine
variety (exercise: which rings can occur?). The solution to this is to enlarge the
theory of varieties to schemes, but that is beyond the scope of this course.

Example 4.2. Let V = V (x) ⊂ A1, which is a single point at the origin. Then
IV = 〈x〉, and:

C[V ] = C[x]/〈x〉 ∼= C

This isomorphism takes a polynomial f to its constant term f |0 ∈ C. Of course
a function on V is just the data of a single complex number, and every function
on V is regular. 4

Example 4.3. Let V = V (y − x2) ⊂ A2. The polynomial y − x2 is obviously
irreducible, so Corollary 3.11 says that IV = 〈y − x2〉. Then:

C[V ] =
C[x, y]

〈y − x2〉
∼= C[x]

To see the isomorphism consider the ring homomorphism from C[x, y] to C[x]
which sends x 7→ x and y 7→ x2. This homomorphism is surjective and the
kernel is 〈y − x2〉. 4

Example 4.4. Let V = V (x2 − x) ⊂ A1, which is two points {0, 1}. Then
IV = 〈x2−x〉, because a polynomial vanishes on V iff it has both x and (x− 1)
as a factor. So:

C[V ] = C[x]/〈x2 − x〉
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This is a two dimensional vector space, it’s spanned by the equivalence classes
of 1 and x, and the ring structure is determined by the rule ‘x2 = x’.

A better way to understand this ring is to observe that a function on V is
just the data of two complex numbers (α, β). The ring structure on the set of
functions is just point-wise multiplication, so the product of (α, β) and (γ, δ) is
(αγ, βδ). So we have a ring homomorphism

C[V ]→ C⊕ C
f 7→ (f |0, f |1)

given by evaluating the polynomial at both points. This map is actually a ring
isomorphism; it’s injective by definition, and it’s surjective since:

(β − α)x+ α 7→ (α, β)

In this example every function on V is regular. 4

We shall prove later that the ring C[V ] knows everything about the variety
V . Here is a first example of this phenomenon.

Let p ∈ V be a point of V . Then given a regular function f on V we can
evaluate it at the point p, and this defines a map:

evp : C[V ]→ C
f 7→ f(p)

Note that evp is a ring homomorphism, and it is also linear over C.

Lemma 4.5. Let V be an affine variety. There is a bijection:

{ points of V } ∼−→ {C-linear ring homomorphisms C[V ]→ C}
p 7→ evp

Note that not every ring homomorphism C[V ]→ C is C-linear; for example
the map

f 7→ f |p
(the complex conjugate of f(p)) is a homomorphism but is not C-linear.

Proof. We just need to construct the inverse map. Pick generators f1, ..., fk for
IV , so V = V (f1, ..., fk), and:

C[V ] = C[x1, ..., xn]/〈f1, ..., fk〉

Suppose we have a C-linear homomorphism ε : C[V ]→ C. We can think of this
a (C-linear) homomorphism ε : C[x1, ..., xn]→ C which sends each fj to zero.

Now each co-ordinate function xi is a polynomial, so using ε we can get n
complex numbers

pi = ε(xi) ∈ C
and this defines a point p = (p1, ..., pn) ∈ An. These numbers completely
determine ε. If g is any polynomial then applying ε to g must give

ε(g) = g(p1, ..., pn)

because ε is a homomorphism and also C-linear. So ε is exactly the evaluation
homomorphism evp.

Finally, the fact that ε(fj) = 0 says that fj(p) = 0 for all j, so p is in V .
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5 Irreducibility

Recall that a ring R is an integral domain (or just a domain) if there do not
exist non-zero elements f, g ∈ R such that fg = 0.

Example 5.1. Let V = V (xy) ⊂ A2. The solutions to xy = 0 are {y = 0}
and {x = 0}, so V is the union of the x-axis and the y-axis. This is a basic but
useful example, it’s called a node.

We can write V as a union

V = V (x) ∪ V (y)

of two smaller affine varieties. How is this fact reflected in the ring C[V ]? The
answer is that

C[V ] = C[x, y]/〈xy〉

fails to be an integral domain: we have two non-zero elements x, y whose product
xy is zero in C[V ]. Geometrically, x|V is a regular function which vanishes along
the y-axis, and y|V is a regular function which vanishes along the x-axis, and
their product xy|V vanishes at all points. 4

Definition 5.2. An affine variety V ⊂ An is called reducible if

V = V1 ∪ V2

for two affine varieties V1, V2 ⊂ An, where V1 6= V and V2 6= V . If V is not
reducible we call it irreducible.

Definition 5.3. An ideal I (in some ring R) is called prime if there do not
exist elements f, g ∈ R such that f /∈ I and g /∈ I but fg ∈ I.

Proposition 5.4. Let V be an affine variety. Then

V is irreducible ⇐⇒ IV is prime ⇐⇒ C[V ] is a domain

Proof. The claim that IV is prime iff C[V ] is a domain is trivial, since the class
of f is zero in C[V ] exactly when f ∈ IV . So let’s prove V is irreducible iff IV
is prime.

Say V is reducible, so V = V1 ∪ V2 in a non-trivial way. Then V1 6= V so
IV ( I(V1). So there is a polynomial f ∈ I(V1) with f /∈ IV . Similarly there is
a g ∈ I(V2) with g /∈ IV . But fg vanishes on V1 ∪ V2 so fg ∈ IV .

Conversely, suppose we have f, g such that neither lies in IV but fg ∈ IV .
Set V1 = V ∩ V (f) and V2 = V ∩ V (g). Then V ⊂ V (fg) = V (f) ∪ V (g) so
V = V1 ∪ V2. But V1 6= V since f /∈ IV , and V2 6= V since g /∈ IV .

Example 5.5.

1. If V is a single point then it’s obviously irreducible, and indeed C[V ] = C
is a field, in particular a domain.

2. If V is two points then it’s obviously reducible, and C[V ] = C⊕ C is not
a domain since (1, 0)(0, 1) = (0, 0).
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3. A node V (xy) ⊂ A2 is reducible, it splits as V = V (x) ∪ V (y). But the
two pieces V1 = V (x) and V2 = V (y) themselves are irreducible, since:

C[V1] = C[x, y]/〈x〉 ∼= C[y] and C[V2] = C[x, y]/〈y〉 ∼= C[x]

So we can split V as a union of two irreducible pieces.

4

Suppose V is a reducible affine variety, so we can split it as V = V1 ∪ V2.
If V2 (say) is still reducible, we can split V up further as V = V1 ∪ V3 ∪ V4.
Continuing in this way, we should end up with a decomposition

V = V1 ∪ ... ∪ Vr

of V into irreducible pieces (this is analogous to prime factorization). But: does
the process always terminate after a finite number of steps? The answer is yes.

Proposition 5.6. Any affine variety V can be decomposed as V = V1 ∪ ...∪ Vr
where each Vi is irreducible (and Vi * Vj for i 6= j). The decomposition is
unique up to ordering.

The Vi are called the irreducible components of V .

Proof. We leave uniqueness as an exercise, the harder part is finiteness (for
prime factorization it’s the other way around!).

Suppose V is reducible, and we begin splitting it into pieces as described
above. If the procedure never terminates, we will obtain an infinite chain

V ) V1 ) V2 ) ...

of subvarieties, hence an infinite chain of ideals:

IV ( IV1
( IV2

( ...

Let’s write Ii = IVi and I0 = IV , and set:

I =

∞⋃
i=0

Ii

By Hilbert’s Basis Theorem (Theorem 3.3) I must have a finite generating
set f1, ..., fk. By definition, each ft is an element of some Iit , and if we set
m = max{i1, ..., ik} then each ft is an element of Im. But this implies that
I ⊂ Im, which means Im+1 ⊂ Im, and this is a contradiction.

Remark 5.7. We’ve just proved a purely algebraic statement: if every ideal in R
is finitely-genererated then we cannot have an infinite strictly-increasing chain
of ideals in R. This is called the ascending chain condition. The converse result
also holds (exercise), so either conditions can be used as the definition of a
Noetherian ring.

For a hypersurface V (f) it is straight-forward to find the irreducible compo-
nents. Recall from Remark 3.12 that f generates IV iff the irreducible factors
of f all occur with multiplicity one.

12



Lemma 5.8. Let V = V (f) be a hypersurface, and assume that f generates
IV . Then:

(i) V is irreducible iff f is irreducible.

(ii) If V is reducible then the irreducible components of V are the hyper-
surfaces defined by the irreducible factors of f .

Proof. Since C[x1, ..., xn] is a UFD the ideal 〈f〉 is prime iff f is irreducible, so
part (i) follows from Proposition 5.4. If f has irreducible factors f = g1...gk
then V = V (g1)∪ ...∪V (gk), and part (i) says that each V (gi) is irreducible.

A note on terminology: In many algebraic geometry texts you will see the
words algebraic set. We are not going to use these words, for two reasons.

• Some people insist that a ‘variety’ must be irreducible, and use the words
‘algebraic set’ for what we would call a reducible variety.

• Over other fields (R, Fp,...) the set of points of a variety V may not tell you
much information about the polynomials defining V ; we saw examples of
this when we discussed the Nullstellensatz. So it’s helpful to distinguish
between the ‘algebraic set’ which is the set of points of V , and a more
abstract notion of a ‘variety’ which remembers more information. Since
we work over C we don’t need this distinction.

6 Regular functions and isomorphisms

The affine variety V (y) ⊂ A2 is just the x-axis, so intuitively it’s ‘the same’ as
the affine line A1. To say this precisely we need a definition of when two affine
varieties are isomorphic. But before we do that, we need think about functions
between two affine varieties.

Definition 6.1. Let V ⊂ An and W ⊂ Ak be affine varieties. A function
F : V → W is called a regular function if there exist polynomials f̂1, .., f̂k ∈
C[x1, .., xn] such that:

F = (f̂1, ..., f̂k)|V

So a regular function from An to Ak is just a function whose components are
polynomials, and a regular function from V to W is a the restriction of some
regular function F̂ : An → Ak such that F̂ (V ) ⊂W . If we set W = A1 then we
exactly recover Definition 4.1.

Note that different k-tuples of polynomials can define the same regular func-
tion V →W , because if h ∈ IV then we can add h to any component fi and the
restriction of this function to V does not change. So more precisely, a regular
function from V to W is a k-tuple

F = (f1, ..., fk)

of elements fi ∈ C[V ], satisfying F (V ) ⊂W .

Definition 6.2. A regular function F : V → W is an isomorphism if there
exists a regular function G : W → V such that F ◦ G = 1W and G ◦ F = 1V .
If there exists an isomorphism between V and W we say they are isomorphic,
and write V ∼= W .
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A regular function F which is a bijection is not automatically an isomor-
phism, because the inverse function might not be regular. We’ll see a counterex-
ample in Example 6.12 below.

Example 6.3. Let V = V (y) ⊂ A2. Define

F̂ : A1 → A2 Ĝ : A2 → A1

x 7→ (x, 0) (x, y) 7→ x

These are both regular, and the image of F̂ lies in V , so we get regular functions
F : A1 → V and G = Ĝ|V : V → A1. Then F ◦ G and G ◦ F are both the
identity, so V is isomorphic to A1. This is reassuring!

Notice that F̂ ◦Ĝ is not the identity function on A2, but this doesn’t matter.
4

Example 6.4. Let V = V (y − x2, z − x3) ⊂ A3. Then V ∼= A1, using:

F : A1 → V G : V → A1

x 7→ (x, x2, x3) (x, y, z) 7→ x

4

We have made an important conceptual leap. Up until now an affine variety
only made sense as a subset of some ambient An. Now we have freed ourselves
of this: we can say that V (y) ⊂ A2 and V (y − x2, z − x3) ⊂ A3 are the same
mathematical object, they’ve just been embedded into different ambient spaces.

An isomorphism F : An ∼−→ An is just an algebraic change of co-ordinates.
If V ⊂ An is an affine variety then it’s obvious that F (V ) is also an affine variety;
just take the polynomials defining V and write them in the new co-ordinates.
And it’s obvious that

F : V → F (V )

is an isomorphism.

Example 6.5. The hypersurfaces V (x2 + y2−1) ⊂ A2 and V (xy−1) ⊂ A2 are
isomorphic, since they’re related by the co-ordinate change:

(x, y) 7→ (x+ iy, x− iy)

We saw this in the introduction. 4

Example 6.6. The hypersurface V (y − x2) is isomorphic to A1, see Example
2.6. 4

We have claimed that everything in algebraic geometry can be expressed
either geometrically or algebraically, so a regular function from V to W should
have an algebraic interpretion. It does: it corresponds to a ring homomorphism
from C[W ] to C[V ]. Let’s explain why.

Suppose we have a regular function:

F : An −→ Ak

x 7→ (f1(x), ..., fk(x))

14



If g ∈ C[y1, ..., yk] is a polynomial on Ak, then we can get a polynomial on An
by defining:

F ∗(g) = g ◦ F : x 7→ g
(
f1(x), ..., fk(x)

)
This is called the pull-back of g along F . So we have a function:

F ∗ : C[y1, ..., yk] −→ C[x1, ..., xn]

It’s easy to check that this is a ring homomorphism, and also linear over C.

Example 6.7. Let F : A2 → A3 be the regular function:

F (x1, x2) = (x1 + x2, x
2
1, x

2
2)

Then
F ∗ : C[y1, y2, y3] −→ C[x1, x2]

is the ring homomorphism such that:

y1 7→ x1 + x2, y2 7→ x21, y3 7→ x22

So for example F ∗(y1 + y22) = x1 + x2 + x41. 4

Every C-linear ring homomorphism from C[y1, ..., yk] to C[x1, ..., xn] arises
in this way. If Φ is such a homomorphism then we can get k polynomials (in
n-variables) by setting

f1 = Φ(y1), ..., fk = Φ(yk)

and this is exactly the data of a regular map:

F = (f1, ..., fk) : An → Ak

The fi’s determine Φ completely. Because Φ is a C-linear homomorphism, if
g ∈ C[y1, ..., yk] is an arbitrary polynomial we must have:

Φ(g) = g(f1, ..., fk) = F ∗(g)

Thus Φ is exactly the pull-back homomorphism associated to the regular map
F . So we have a bijection:{

Regular
functions

An → Ak
}
∼−→
{

C-linear
homomorphisms

C[y1, .., yk]→ C[x1, ..., xn]

}
Now suppose we have a regular function F : V → W between two general

affine varieties. Just as before, if we have regular function g : W → C then we
can define the pull-back of g along F to be the function:

F ∗(g) = g ◦ F : V → C

It’s clear that F ∗(g) will also be regular; F is the restriction of some polynomial

map F̂ : An → Ak, and g is the restriction of some polynomial ĝ ∈ C[y1, ..., yk],

and then F ∗(g) is the restriction of ĝ ◦ F̂ . So we have a map:

F ∗ : C[W ] −→ C[V ]

It’s easy to see that F ∗ is a C-linear ring homomorphism.
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Proposition 6.8. Let V ⊂ An and W ⊂ Ak be two affine varieties. Then we
have a bijection

{Regular functions V →W} ∼−→ {C-linear homomorphisms C[W ]→ C[V ]}

sending F to F ∗.

The proof of this result is similar to the proof of Lemma 4.5. In fact that
lemma is a special case of this proposition: if V is a point then C[V ] = C, and
a regular function V →W is just the choice of a point of W .

Proof. Let Φ : C[W ] → C[V ] be a C-linear homomorphism. We can think of
this as a (C-linear) homomorphism from C[y1, ..., yk] to C[V ] which sends the
ideal IW to zero. If we evaluate Φ on the co-ordinate functions yi we get

f1 = Φ(y1), ..., fk = Φ(yk) ∈ C[V ]

which is the data of a regular map:

F = (f1, ..., fk) : V → Ak

The fact that Φ is a C-linear homomorphism means that for an arbitrary poly-
nomial g ∈ C[y1, .., yk] we must have

Φ(g) = g(f1, ..., fk) = F ∗(g) ∈ C[V ]

so Φ is the pull-back homomorphism F ∗. Finally, we must show that F (V ) ⊂W .
If p ∈ V is any point, and g is any function vanishing on W , then by assumption
Φ(g) = g(F (p)) = 0. So F (p) lies in V (g), and this is true for all g ∈ IW , which
means F (p) ∈W .

This bijection between regular functions and ring homomorphisms behaves
nicely when we compose regular functions. Suppose

V
F−→W

G−→ X

are two regular functions. It’s clear that G◦F is regular: just choose polynomial
maps F̂ : An → Ak and Ĝ : Ak → Am that restrict to give F and G, then G ◦F
is the restriction of Ĝ ◦ F̂ . So we have (C-linear) ring homomorphisms:

F ∗ : C[W ]→ C[V ], G∗ : C[X]→ C[W ], and (G◦F )∗ : C[X]→ C[V ]

But it’s easy to see that (G ◦ F )∗ is the composition F ∗ ◦G∗, because:

(G ◦ F )∗(h) = h ◦G ◦ F = (G∗(h)) ◦ F = F ∗(G∗(h))

So the bijection between regular functions and ring homomorphisms respects
compositions. Just remember that the order of compositions gets reversed!

Remark 6.9. If you know what a functor is, we’ve just shown that the procedure
sending V to C[V ] and F to F ∗ is a contravariant functor.

Corollary 6.10. Let F : V →W be a regular map between two affine varieties.
Then F is an isomorphism iff

F ∗ : C[W ]→ C[V ]

is an isomorphism of rings.
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Proof. If F has an inverse G then F ∗ and G∗ are inverse homomorphisms.
Conversely, suppose F ∗ is a ring isomorphism. Then (F ∗)−1 is automatically
C-linear, so there is a regular function G : W → V such G∗ = (F ∗)−1, which
means that (G◦F )∗ is the identity function on C[V ] and (F ◦G)∗ is the identity
function on C[W ]. Then (using Proposition 6.8 again) G◦F must be the identity
on V , and F ◦G must be the identity on W .

So the ring C[V ] really does know everything about the variety V .

Example 6.11. Let V = V (y − x2) ⊂ A2. Then we saw in Example 4.3 that
C[V ] ∼= C[x] using the (C-linear) homomorphism defined by x 7→ x and y 7→ x2.
The associated regular function

F : A1 → V

x 7→ (x, x2)

is an isomorphism. 4

Example 6.12. Let V = V (y2 − x3) ⊂ A2. This is a very nice example that
we’ll come back to many times, it’s called a cusp singularity. It’s actually a very
degenerate example of an elliptic curve.

Consider the regular map:

F : A1 → V

t 7→ (t2, t3)

This function is evidently an injection, and it’s easy to check that it’s also a
surjection. However, F is not an isomorphism.

To see this, observe that IV = 〈y2 − x3〉 since this polynomial is irreducible
(Corollary 3.11). Now consider the ring homomorphism associated to F :

F ∗ : C[V ] =
C[x, y]

〈y2 − x3〉
−→ C[t]

f 7→ f(t2, t3)

Since x 7→ t2 and y 7→ t3 it’s clear that F ∗ is not a surjection, its image does
not contain the polynomial t. So F ∗ is not an isomorphism and hence neither
is F .

In fact we can make the stronger statement that C[V ] is not isomorphic to
C[t]; the ring C[t] is a UFD but C[V ] is not (since y2 = x3). So there is no
possible isomorphism between V and A1. 4

Here’s a lemma which is often useful for proving that a variety is irreducible:

Lemma 6.13. Let F : V → W be a surjective regular map between two affine
varieties. If V is irreducible then W must be irreducible.

Proof. Exercise.

Example 6.14. The regular function F from Example 6.12 is surjective, and
A1 is irreducible, so the cusp must be irreducible. This also follows from Lemma
5.8 since y2 − x3 is an irreducible polynomial. 4
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Of course saying that F : V → W is surjective is the same as saying that
W is the image of F . But it’s important to realize that the image of an affine
variety under a regular map might not be an affine variety.

Example 6.15. Consider the regular map:

F : A2 → A2

(x, y) 7→ (x, xy)

The image of F is the subset

{(x, xy), x 6= 0} ∪ {(0, 0} =
(
A2 \ {(0, y)}

)
∪ {(0, 0)}

= A2 \ {(0, y), y 6= 0}

This cannot be an affine variety in A2, because it is not a closed subset. 4

7 Zariski open subsets

An affine variety V ⊂ An is always a closed subset of An(= Cn), since it is the
zero locus of some polynomials. But most closed subsets of An are not affine
varieties.

Example 7.1. The subsets {|z| ≤ 1} and {Re(z) ≥ 0} in A1 are both closed,
but neither is an affine variety because an affine variety in A1 must be a finite
set (see Example 2.2). 4

Here is some new terminology:

Definition 7.2. A Zariski-closed subset of An is an affine variety. A Zariski
open subset of An is the complement An \ V of some affine variety V .

The simplest kind of Zariski open subset in An is the complement of a
hyperplane, i.e. a subset of the form:

U = An \ V (f)

Every affine variety is (by definition) the intersection of a finite set of hyper-
planes, so every Zariski open subset is the union of a finite number of subsets
of the form above.

Remark 7.3. If you know what a topology is, you can observe (using Lemma 2.7
and Corollary 3.5) that the Zariski open subsets define a topology on An. It’s
called the Zariski topology.

Despite the previous remark Zariski open subsets are a poor substitute for
more general open subsets. In complex analysis we might talk about an ‘open
neighbourhood’ of a point x ∈ C, and have in mind something like an open ball
B(x, ε) for a small real number ε. But this is not a Zariski open neighbourhood;
a Zariski open neighbourhood must always be much larger.

Example 7.4. In A1, a Zariski-closed subset is exactly a finite set. So a Zariski
open neighbourhood must be the complement of a finite set.

In particular if we take two points x, y ∈ A1, then if we choose ε1 and ε2
small enough then the open balls B(x, ε1) and B(y, ε2) will be disjoint. But we
cannot achieve this with Zariski open neighbourhoods, because if U1, U2 ⊂ A1

are any two Zariski open subsets then U1 and U2 must intersect. (This says
that the Zariski topology on A1 is not Hausdorff ). 4
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Definition 7.5. Let V ⊂ An be an affine variety. A Zariski-closed subset of
V is the intersection V ∩W for some other affine variety W ⊂ An.

A Zariski open subset of V is the complement V \ V ∩W of some Zariski-
closed subset.

Of course V ∩W is an affine variety, and any affine variety contained in V
looks like this, so another name for a Zariski-closed subset is an affine subva-
riety. Also note that a Zariski open subset of V is exactly a subset of the form
V ∩ U where U is a Zariski open subset of An (so we’re just talking about the
induced topology on the subset V ⊂ An).

We observed in Example 7.4 that any two Zariski open subsets in A1 must
intersect. The following easy lemma generalizes this observation:

Lemma 7.6. Let V be an irreducible affine variety, and U1, U2 ⊂ V be two
non-empty Zariski open subsets. Then U1 ∩ U2 is non-empty.

Conversely if V is reducible then there exist two disjoint non-empty Zariski
open subsets U1, U2 ⊂ V .

Proof. Exercise.

Example 7.7. The node V = V (xy) ⊂ A2 is reducible. The Zariski open
subsets U1 = V \ V (x) and U2 = V \ V (y) are non-empty and disjoint. 4

You may recall the definition of the closure of a subset S ⊂ Cn, it’s the
intersection of all closed subsets containing S. We can do the same thing with
Zariski-closed subsets (actually we can do the same thing in any topology).

Definition 7.8. Let S ⊂ An be any subset. The Zariski closure of S is the
intersection of all Zariski closed subsets containing S.

By Corollary 3.5 the Zariski closure of S is an affine variety, it’s the smallest
affine variety containing S. For another way to understand this variety, let

IS ⊂ C[x1, ..., xn]

denote the set of polynomials which vanish at every point of S. It’s trivial to
check that this is an ideal.

Lemma 7.9. Let S ⊂ An be any subset. Then V (IS) is the Zariski closure of
S.

Proof. Exercise.

Since Zariski closed subsets are also closed in the usual sense it’s immediate
the closure of S (in the usual sense) is contained in the Zariski closure. But the
Zariski closure of S may be much bigger.

Example 7.10. Let S = {x; x ∈ Z} ⊂ A1. This is a closed subset, but not
Zariski closed. If a polynomial f vanishes at all points of S then it must be the
zero polynomial, so the Zariski closure of S is the whole of A1.

The same argument applies to any infinite subset S. 4

In particular if U is a Zariski open subset of A1 then the Zariski closure of U
is the whole of A1. The same fact is true in An. But if we have a more general
affine variety V , and a Zariski open subset U ⊂ V , it may not be true that the
Zariski closure of U is the whole of V .
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Lemma 7.11. Let V ⊂ An be an irreducible affine variety. If U ⊂ V is a
non-empty Zariski open subset then the Zariski closure of U is V .

Conversly if V is reducible then there exists a non-empty Zariski open subset
U ⊂ V whose Zariski closure is smaller than V .

Proof. Exercise.

Example 7.12. Let V = V (xy) ⊂ A2 and let U = V \ V (x). The Zariski
closure of U is V (y). 4

Now we have three equivalent definitions of ‘irreducible’.

8 Quasi-affine varieties

Yet more redundant terminology:

Definition 8.1. A quasi-affine variety U ⊂ An is a Zariski open subset of
an affine variety.

This a larger class of spaces that we can study in algebraic geometry. Note
that affine varieties are a special case of quasi-affine varieties.

Example 8.2. A1 \ {(0, 0)} is a quasi-affine variety, and so is An \ {(0, 0)}. 4

More generally any Zariski open subset of An is a quasi-affine variety. These
are the simplest kind of quasi-affine variety, but not the only kind.

Example 8.3. Let V = V (y2 − x3) ⊂ A2, the cusp singularity. Then

U = V ∩ {y 6= 0} = V \ {(0, 0)}

is a Zariski open subset of V , so it’s a quasi-affine variety. Notice that the
function F : t 7→ (t2, t3) from Example 6.12 is a bijection between A1 \ (0, 0)
and this U . Once we’ve defined isomorphisms between quasi-affine varieties it
will be a straight-forward exercise to show that this is an isomorphism. 4

Example 8.4. Recall the function F : A2 → A2, (x, y) 7→ (x, xy) from Example
6.15, whose image is the subset:

S = A2 \ {(0, y), y 6= 0}

This S is not a quasi-affine variety. The Zariski-closure of S is the whole of A2;
in fact the closure of S in the usual sense is the whole of A2. So the only affine
variety containing S is A2 itself, but S is not Zariski open in A2. 4

Before we can define isomorphisms between quasi-affine varieties we must
first define regular functions between quasi-affine varieties, and to do this we
need to generalize from polynomial functions to rational functions.

In general rational functions are subtle, but we’ll start with rational functions
on An which are pretty straight-forward.

Definition 8.5. A rational function on An is a ratio

f/g

where f, g ∈ C[x1, ..., xn] are two polynomials and g 6= 0.
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There’s an obvious equivalence relation we should use here, if h is any non-
zero polynomial we should regard

f/g and fh/gh

as the same thing. Any rational function can be written uniquely in lowest terms
by cancelling all common factors between f and g. (This only works because
the polynomial ring is a UFD! We’ll return to this point later.) Also note that
f1/g1 and f2/g2 are equivalent rational functions iff:

f1g2 = f2g1

The set of all rational functions on An, up to equivalence, is denoted:

C(x1, .., xn)

This set is evidentally a field, rational functions can be added, subtracted, mul-
tiplied and divided in the obvious way. In particular the inverse of f/g is g/f .

Try not to confuse the field C(x1, ..., xn) with the ring C[x1, ..., xn]. It’s
unfortunate that history has left us with such similar notation.

Despite the name, a rational function is not a function on An. Approxi-
mately, it’s the function

x 7→ f(x)/g(x)

but this only makes sense if g(x) 6= 0, so f/g only defines a function on the
Zariski open subset An \ V (g). This subset is called the set of regular points
of the rational function f/g.

Remark 8.6. Perhaps you’d like to say that if g(x) = 0 then the value of the
function is infinity. Once we’ve learnt about projective geometry we’ll see that
it is possible to make sense of this, as long as we don’t also have f(x) = 0.

Rational functions give us more examples of functions which are ‘algebraic’,
i.e. they could be defined with coefficients in any field. On quasi-affine varieties
this extra flexibility is essential, and we’re going to use them to formulate the
definition of a regular function. The full definition is a bit complicated so we’ll
start with the easiest class of quasi-affine varieties: the Zariski open subsets in
An.

Definition 8.7. Let U ⊂ An be a Zariski open subset. A regular function
on U is a rational function f/g ∈ C(x1, ..., xn) such that g never vanishes on U .

In other words, U is contained in the set of regular points of f/g. In this
definition we may as well assume that f/g is written in lowest terms, since
fh/gh = f/g defines a regular function on An \ V (g) not just on the smaller
open set An \ V (gh).

It’s clear that the set of regular functions on U forms a ring, which is a
subring of the field C(x1, ..., xn). This ring can be interesting but it’s not as
important as it was in the affine case, as we shall see.

Example 8.8.

1. Let U = A1 \ 0. A rational function f/g ∈ C(x) is regular in U iff g has
no zeroes away from the origin, which means g must be a scalar multiple
of xk for some k ∈ N. So the set of regular functions on U is:{

f(x)/xk, f(x) ∈ C[x], k ∈ N
}
⊂ C(x)
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It’s easy to see that this is a subring of C(x). In this ring the element x
has a multiplicative inverse 1/x, which it didn’t have in the ring C[x]; in
fact it is the smallest subring of C(x) containing C[x] with this property.
It’s called the localization of C[x] at the element x.

2. Let U = A1 \ {0, 1}. Then the set of regular functions on U is the subring{
f(x)

xk(x− 1)m
, f(x) ∈ C[x], k,m ∈ N

}
⊂ C(x)

of rational functions where the denominators only have zeroes at 0 or 1.
In this ring both x and x− 1 have multiplicative inverses.

3. Generalizing the above, let U ⊂ A1 be any Zariski open subset. Then U is
the complement of some finite set {p1, ..., pt} ⊂ A1, and the ring of regular
functions on U is:{

f(x)

(x− p1)k1 ...(x− pt)kt
f(x) ∈ C[x], k1, ..., kt ∈ N

}
⊂ C(x)

4

The more points we delete from A1, the more regular functions we get. In
some sense, the field C(x) is the set of regular functions we get when we delete
all the points of A1! But maybe we shouldn’t take this too seriously.

Example 8.9. Let U = A2 \ (0, 0). It is not possible for a polynomial g(x, y)
to vanish only at the origin, unless g is constant (see Lemma 2.5), hence f/g
only defines a regular function on U if it is actually a polynomial. So the ring
of regular functions on U is the polynomial ring C[x, y]. 4

The previous example shows that looking at the ring of regular functions is
not usually enough to distinguish quasi-affine varieties, since A2 and A2 \ (0, 0)
produce the same ring.

We now have enough to define regular maps between quasi-affine varieties,
as long as the source is either affine or a Zariski open subset of An.

Definition 8.10. Let U ⊂ An be a Zariski open subset and let V ⊂ Ak be any
quasi-affine variety. A regular function F : U → V is a k-tuple

F =
(
f1/g1, ..., fk/gk

)
of regular functions on U , such that F (U) ⊂ V .

As always, an isomorphism is a regular function with a regular inverse.

Example 8.11. Let U = A1 \ 0, and let V be the affine variety:

V = V (xy − 1) ⊂ A2

Consider the functions:

F : U → A2 G : V → A1

t 7→ (t, 1/t) (x, y) 7→ x
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Observe that F is indeed a regular function on U , and F (U) ⊂ V . Also G is a
regular function on V , and G(V ) ⊂ U . These two functions are inverse to each
other, hence U and V are isomorphic.

So although U looks like it’s just a quasi-affine variety, it’s actually isomor-
phic to an affine variety. This isomorphism is reflected in the ring of regular
functions, since

C[V ] = C[x, y]/〈xy − 1〉

is isomorphic to the ring of regular functions on U that we computed in Example
8.8, using the map y 7→ 1/x. 4

This example generalizes easily to show that any quasi-affine variety of the
form

U = An \ V (f)

is isomorphic to an affine variety (exercise). However these quasi-affine varieties
are quite special; for example it’s possible to prove that A2 \ (0, 0) is not iso-
morphic to any affine variety. The key point is that the ring of regular functions
cannot tell that this space is different from A2.

Now let’s try to understand regular functions on more complicated quasi-
affine varieties. To see why the definition is subtle we have to look at something
higher dimensional.

Example 8.12. Let V be the affine variety:

V = V (xy − zw) ⊂ A4

V contains the whole plane y = z = 0 and if we delete this plane we get a
quasi-affine variety:

U = V \ V (z, y)

Consider the rational functions:

x/z and w/y ∈ C(x, y, z, w)

The first one is regular whenever z 6= 0, so it defines a function on the Zariski
open subset U1 = U \ V (z), which is not the whole of U . The second one is
regular when y 6= 0, so it defines a function on U2 = U \ V (y), which again is
not the whole of U . But on the intersection U1 ∩U2 these are actually the same
function, because

(x, y, z, w) ∈ V =⇒ x

z
=
w

y

provided neither z nor y are zero. Between them U1 and U2 cover the whole of
U so we can define a function on U by:

F : U → C

(x, y, z, w) 7→

{
x/z if z 6= 0

w/y if y 6= 0

But there is no single rational function in C(x, y, z, w) which is regular on the
whole of U and restricts to give this function. 4
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We want our definition of ‘regular function’ to allow functions such as F
from the above example.

Definition 8.13. Let U ⊂ An be any quasi-affine variety. We say a function
F : U → C is regular if there exists a finite cover

U = U1 ∪ ... ∪ Uk

of U by Zariski open subsets, and rational functions

f1/g1, ..., fk/gk ∈ C(x1, ..., xn)

such for each i the polynomial gi does not vanish in Ui, and:

fi
gi

∣∣∣∣
Ui

≡ F |Ui

So a regular function can be described by a ratio of polynomials locally (in
the Zariski topology), but perhaps not globally. Given this definition it’s easy
to write down the definition of a regular function between any two quasi-
affine varieties, it’s a function from F : U → U ′ whose components are regular
functions.

Lemma 8.14. If U,U ′, U ′′ are quasi-affine varieties and F : U → U ′ and
G : U ′ → U ′′ are regular functions then the composition G ◦ F is regular.

Proof. Exercise.

And now it’s clear what it means for two quasi-affine varieties to be iso-
morphic.

However, there is a technical issue here that we must address. There are
two kinds of varieties for which we have already defined the notion of a ‘regular
function’, namely affine varieties, and Zariski open subsets of An. So we must
check that our new definition agrees with our previous definitions in these two
cases. The precise statements we need are:

(1) Let U ⊂ An be a Zariski open subset. Suppose F : U → C is a regular
function in the sense of Definition 8.13. Then there is a single rational
function f/g ∈ C(x1, ..., xn) such that g never vanishes inside U and F =
(f/g)|U .

(2) Let V ⊂ An be an affine variety, and let F : V → C be a regular function
in the sense of Definition 8.13. Then there is a single polynomial f ∈
C[x1, ..., xn] such that F = f |V .

Since the proofs are a little fiddly (particularly for (2)) we banish them to
Appendix A.

Writing down a regular function on a quasi-affine variety U looks like a lot
of work: we must first specify an open cover U = U1∪ ...∪Uk, then write down a
rational function fi/gi for each Ui (and make sure they agree on the overlaps).
But if we assume that U is an open subset of an irreducible affine variety V
then the process is much simpler.
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Proposition 8.15. Let U be a Zariski open subset of an irreducible affine va-
riety V ⊂ An, and let

F,G : U → C

be two regular functions. Suppose U ′ ⊂ U is a non-empty Zariski open subset
such that F |U ′ = G|U ′ . Then F and G agree on the whole of U .

Proof. Pick any point p ∈ U \ U ′, we want to show that F (p) = G(p).
By assumption, we can find some Zariski open set U1 3 p and some ratio-

nal function f1/g1 ∈ C(x1, ..., xn) which is regular on U1, such that F |U1
=

(f1/g1)|U1
. We can also find a U2 3 p and f2/g2 such that G|U2

= (f2/g2)|U2
.

Consider the Zariski open subset:

W = U ′ ∩ U1 ∩ U2

Since V is irreducible Lemma 7.6 says that W is non-empty. Inside W the
functions F and G agree, so the polynomial

f1g2 − f2g1

vanishes on W . But by Lemma 7.11 the Zariski closure of W is the whole of V ,
hence f1g2−f2g1 vanishes on the whole of V . This means that F (p) = G(p).

This means that on a variety of this form the first bit of data (U1, f1/g1)
determines the whole regular function F . Any regular function which agrees
with f1/g1 on the subset U1 must agree with F everywhere.

However, if you just write down U1 and f1/g1 then there is no guarantee that
you can extend it to a regular function on the whole of U . We will think about
this issue soon when we study rational functions on irreducible affine varieties.
The proposition we’ve just proved will be a key technical result.

If we drop the assumption that V is irreducible then the proposition fails.

Example 8.16. Let U be the quasi-affine variety:

U = V (xy) \ {(0, 0)} ⊂ A2

We can cover U by the two Zariski opens subsets U1 = U \ V (x) and U2 =
U \ V (y), and they don’t intersect. A rational function f1/g1 defines a regular
function on U1 provided that g1 is never zero in U1, and f2/g2 defines a regular
function on U2 provided that g2 is never zero in U2. If we patch the two together
we get a function F on U , and F is regular by definition. But knowing the values
of F on U1 tells you nothing about its values on U2. 4

9 Rational functions: function fields

Rational functions can be important even when they’re not regular everywhere.
However if we allow this possibility then they stop being actual functions, so
what are they?

There are (at least) two answers to this question, and we’ll start with a more
algebraic approach. If you’ve ever seen the formal construction of Q from Z,
then the following definition should look familiar.
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Definition 9.1. Let R be any integral domain. The fraction field of R is the
set of expressions

f

g
, f, g ∈ R, g 6= 0

up to the equivalence relation generated by:

f

g
∼ hf

hg
for any h 6= 0 ∈ R

This definition is not as simple as it first appears.

• This definition goes badly wrong if R is not an integral domain. If we
have zero divisors g, h, then 1/g is a sensible fraction, but multiplying top
and bottom by h gives h/hg = h/0 which is not allowed.

• As the name suggests the fraction field of R is indeed a field, using the
obvious operations. The ring R sits inside this field as the set of elements
of the form f/1.

• The binary relation ∼ occuring in this definition is not itself an equivalence
relation; for example it is not usually symmetric. But (like any relation) it
does generate an equivalence relation, and that is the equivalence relation
we use. It’s easy to prove that this equivalence relation is exactly:

f1/g1 ∼ f2/g2 iff f1g2 = f2g1 ∈ R

Of course if R = C[x1, ..., xn] then the fraction field is C(x1, ..., xn). If you felt
like Definition 8.5 was a bit sloppy you were correct, and this is one way to
make it precise.

If R is a UFD, for example Z or a polynomial ring, then it is straight-forward
to tell if two elements of the fraction field are equivalent. Any fraction f/g can
be written in lowest terms by cancelling all common factors, and then f1/g1
is equivalent to f2/g2 iff when we write them in lowest terms we get the same
expression. This means that the fields Q or C(x1, .., xn) are quite easy to work
with. However, if the ring is not a UFD then we must be more careful.

Example 9.2. Let V = V (xy − zw) ⊂ A4, as in Example 8.12. It’s easy
enough to convince yourself that xy − zw is an irreducible polynomial, so V is
irreducible, IV = 〈xy − zw〉 and

C[V ] =
C[x, y, z, w]

〈xy − zw〉

is a domain (Proposition 5.4). Hence this ring has an associated fraction field.
Neither y nor z are zero in C[V ], so

x/z and w/y

both define elements of the fraction field. What’s less obvious is that they define
the same element. But this is true, because xy = zw ∈ C[V ] by definition. If
you want to think in terms of ‘multiplying by common factors’, we have to use
the chain of relations

x

z
∼ xw

zw
=
xw

xy
∼ w

y

(it can’t be done in a single step). In this field, when we write a fraction in
‘lowest terms’ the answer is not unique. 4
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Now we can give a precise definition of a rational function. We’ll only con-
sider rational functions on affine varieties, not on quasi-affines, and we must
assume that our varieties are irreducible (or C[V ] will not be a domain).

Definition 9.3. Let V be an irreducible affine variety. The function field
of V is the field of fractions of C[V ], and we denote it by C(V ). A rational
function on V is an element of C(V ).

For our purposes, the terms ‘function field’ and ‘fraction field’ are inter-
changable. Again, try not to get confused between the ring C[V ] and the field
C(V ).

Example 9.4. If V = An then C(V ) = C(x1, ..., xn). 4

Example 9.5. Let V = V (xy) ⊂ A2 (the node). This variety is not irreducible,
and C(V ) is not defined. The problem is that 1/x and 1/y make sense, but
1/xy does not since xy vanishes identically. We should not attempt to work
with rational functions on reducible varieties! 4

Example 9.6. Let V = V (xy−z2) ⊂ A3. This is called an ordinary double point
(ODP) singularity, also known as an A1 singularity. The defining polynomial is
irreducible, so V is irreducible and

C[V ] =
C[x, y, z]

〈xy − z2〉

is a domain. Let’s examine the function field C(V ).
In this field the variable y is redundant, because:

y ∼ z2

x
(9.7)

So any rational function on V is equivalent to an expression of the form:

f(x, z)

g(x, z)

Since (9.7) is the ‘only’ relation, this suggests that C(V ) is actually isomorphic
to the field C(x, z).

We can say this more precisely. A ring homomorphism Φ : R → S between
two domains will induce a homomorphism between their fraction fields, provided
that Φ has no kernel. We can define a ring homomorphism

Φ : C[x, z]→ C[V ]

by sending x and z to their equivalence classes in C[V ], and this homomorphism
has no kernel because no polynomial of the form f(x, z) can lie in the ideal
〈xy − z2〉. So we get a field homomorphism from C(x, z) to C(V ) and this is
surjective because of (9.7). So it must be an isomorphism of fields.

So if we look at function fields we don’t see a difference between V and A2.
But V is certainly not isomorphic to A2, because C[V ] is not a UFD. This shows
that function fields only know some information about a variety, not everything.
We will understand this more precisely in due course. 4
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10 Rational functions: partially-defined regular functions

Let V ⊂ An be an irreducible affine variety. Roughly speaking, a rational
function on V is what we get when we take a rational function f/g on An and
restrict it to V , since

f

g

∣∣∣∣
V

=
f |V
g|V

is a ratio of regular functions on V . But f/g is not actually a function on An,
only on the open set An \V (g), so when we ‘restrict to V ’ we only get a function
on the open subset V \ V (g). We’re going to show that we can interpret the
function field C(V ) as regular functions, but which are only defined on some
open subset of V .

Example 10.1. Let V = V (y − x2) ⊂ A2. The rational function 1/x defines a
function on the Zariski open set

U = V \ (0, 0) ⊂ V

by F : (x, y)→ 1/x. This F is a regular function on the quasi-affine variety U .
Now consider the rational function 1/(y − x2) ∈ C(x, y). The denominator

vanishes everywhere on V , so this doesn’t define an actual function on any
subset on V . Algebrically, we can observe that the class of y − x2 is zero in
C[V ], so 1/(y − x2) doesn’t define an element of the fraction field C(V ). 4

Example 10.2. Let V = V (xy − zw) ⊂ A4. As we observed in Example 8.12,
the rational function x/z ∈ C(x, y, z, w) defines a regular function:

F1 : U1 = V \ V (z) −→ C

Similarly, the rational function w/y ∈ C(x, y, z, w) defines a regular function:

F2 : U2 = V \ V (y) −→ C

But x/z and w/y define the same element of C(V ) (Example 9.2), and indeed F1

and F2 agree on the open set U1 ∩ U2. As we saw, we can patch them together
to define a function

F : U = U1 ∪ U2 −→ C

on this larger open set, and (by definition) F is a regular function. 4

In the preceding example the information of (U1, F1) gives a ‘partially-
defined regular function’ on V , and so does (U2, F2), or (U,F ). We want to
view all three as being equivalent.

Definition 10.3. Let V be an irreducible affine variety. A rational function
on V is an equivalence class of pairs (U,F ), where U ⊂ V is a non-empty Zariski
open subset, and

F : U → C

is a regular function. Two such pairs (U1, F1) and (U2, F2) are defined to be
equivalent if:

F1|U1∩U2
≡ F2|U1∩U2

We must verify that this definition makes sense, and agrees with our previous
definition that a rational function is an element of the function field C(V ).
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Proposition 10.4.

(1) The relation in Definition 10.3 is an equivalence relation.

(2) A rational function on V is the same thing as an element of C(V ).

We’ve done all the real work for the proof of this lemma in Section 8, now
it’s just a matter of tediously unwinding all the definitions.

Proof.

(1) The relation is symmetric and reflexive by definition so we just have to
check transitivity. Suppose (U1, F1), (U2, F2), (U3, F3) are three such pairs
such that F1 and F2 agree on U1 ∩ U2 and F2 and F3 agree on U2 ∩ U3.
Since V is irreducible U1 ∩ U2 ∩ U3 must be non-empty, and F1 and F3

agree on this set. Then by Proposition 8.15 they must agree on the whole
of U1 ∩ U3.

(2) First we show that elements of C(V ) define rational functions in the sense
of Definition 10.3. Let ψ ∈ C(V ). Pick a representative expression f1/g1
for ψ with f1, g1 ∈ C[V ]. Now pick polynomials f̂1 and ĝ1 representing f1
and g1, then we have an open set U1 = V \ V (ĝ1) and a regular function

F1 : U1 → C

by restricting f̂1/ĝ1 to U . Obviously U1 and F1 only depend on f1 and

g1 and not on our choice of polynomials f̂1 and ĝ1. Now suppose f2/g2
is another representative of ψ, where f2, g2 ∈ C[V ]. Picking polynomials
again, we get a regular function

F2 : U2 → C

where U2 = V \ V (ĝ2) and F2 is the restriction of f̂2/ĝ2. By definition

f1g2 − f2g1 = 0 ∈ C[V ], so f̂1ĝ2 − f̂2ĝ1 vanishes on V , hence F1 and F2

agree on the intersection U1 ∩U2. So (U1, F1) and (U2, F2) are equivalent.

Now we go in the other direction. Let U1 ⊂ V be a Zariski open subset,
and F1 : U1 → C a regular function. By assumption we can find a non-
empty Zariski open U ′1 ⊂ U1 and a rational function f1/g1 ∈ C(x1, ..., xn),
regular on U ′1, such that F |U ′

1
= (f1/g1)|U ′

1
. Then g1 doesn’t vanish on V

so
f1|V
g1|V

is an element of C(V ).

Now let U2 ⊂ V be another Zariski open, and F2 : U2 → C another regular
function, such that F1 and F2 agree on the intersection U1 ∩ U2. Again
we can pick a rational function f2/g2 ∈ C(x1, ..., xn) which restricts to
give F2 on some Zariski open subset U ′2 ⊂ U2, and again f2/g2 defines a
class in C(V ). Since F1 and F2 agree where they are both defined, the
polynomial f1g2 − f2g1 vanishes on U ′1 ∩ U ′2, so it vanishes on the whole
of V . This says that

f2|V
g2|V

and
f1|V
g1|V

are equivalent in C(V ).
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If ψ ∈ C(V ) is a rational function we can represent it as a regular function
F : U → C defined on some Zariski open subset of V . All the points in U are
‘regular points’ of the rational function ψ. But our chosen (U,F ) might not be
optimal, it might be possible to extend F to a regular function F ′ : U ′ → C on
some larger open subset. So to see all the ‘regular points’ of ψ we must consider
all possible representatives.

Definition 10.5. Let ψ ∈ C(V ) be a rational function on V . A point p ∈ V
is called a regular point of V if there is a representative f/g for ψ such that
g(p) 6= 0.

If we want to think of a rational function as a partially-defined regular func-
tion (U,F ) there is an equivalent way to say this: a point p ∈ V is a regular
point if there is some (U ′, F ′), equivalent to (U,F ), with p ∈ U ′. The set of
regular points is the union of all such open sets, hence it’s an open subset of V .

Example 10.6. Revisiting Examples 8.12 or 10.2 again, let

V = V (xy − zw) ⊂ A4

and let ψ ∈ C(V ) be the rational function defined by x/z. Every point in
U1 = V \V (z) is a regular point of ψ, but since ψ has an equivalent representative
z/y every point in U2 = V \ V (y) is also regular. So the set of regular points of
ψ is at least

U = U1 ∪ U2 = V \ V (y, z)

and ψ defines a regular function F on U .
It’s not hard to show that U is exactly the set of regular of points of ψ.

Observe that the complement V \ U is just the plane V (y, z) ⊂ A4, which is
isomorphic to A2, and has co-ordinate ring C[x,w]. Now suppose f/g is any
representative of ψ. By definition we have

zf = xg

in the ring C[V ]. If we restrict these regular functions to V (y, z) the function
fz vanishes, and we get:

xg(x, 0, 0, w) = 0 ∈ C[x,w]

But C[x,w] is a domain, so g must vanish on V (y, z). Hence no point in V (y, z)
is regular. 4

11 Rational maps

Now that we understand a rational function is a ‘partially-defined regular func-
tion’ from V to C, we can start to think about rational functions between V
and some other variety W .

Definition 11.1. Let V ⊂ An be an irreducible affine variety. A rational map
from V to Ak is a k-tuple

Ψ = (ψ1, ..., ψk), ψi ∈ C(V )

of rational functions on V .
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If we let Ui ⊂ V be the set of regular points of ψi then we see that Ψ only
defines an actual function on the intersection:

U =

k⋂
i=1

Ui

Each ψi is a regular function on U , so by definition Ψ defines a regular function
from U to Ak. Also note that U is not empty (since V is irreducible) so Ψ really
is giving us a regular function on ‘most’ of V .

As before there is an alternative version of this definition:

Definition 11.2. Let V ⊂ An be an irreducible affine variety. A rational map
from V to Ak is a pair (U,F ) where U ⊂ V is a non-empty Zariski open subset
and F : U → Ak is a regular map. Two such pairs are equivalent if the two
functions agree on the intersection of the open subsets.

We can apply Proposition 10.4 to the individual components of Ψ or F and it
follows immediately that Definitions 11.1 and 11.2 are equivalent (and that the
relation in the second definition is an equivalence relation). The set of regular
points of Ψ is the largest possible U .

We define the image of a rational map Ψ to be the image of the set of
regular points points, i.e. the set {Ψ(x)} for all x where this actually makes
sense.

Definition 11.3. Let V ⊂ An and W ⊂ Ak be two irreducible affine varieties.
A rational map from V to W is a rational map Ψ from V to Ak whose image
lies in W .

We write rational maps as

Ψ : V 99KW

to remind us that they’re not really functions on V .

Example 11.4. Let:
Ψ = (t, 1/t) : A1 99K A2

This is a rational map, and it’s regular on U = A1 \ {0}. If we let V =
V (xy − 1) ⊂ A2 then Ψ(U) ⊂ V , so Ψ defines a rational map:

Ψ : A1 99K V

This map is ‘nearly’ an isomorphism, since Ψ : U → V is an isomorphism (see
Example 8.11). 4

Here’s a small technical lemma which is helpful.

Lemma 11.5. Let V ⊂ An and W ⊂ Ak be two irreducible affine varieties, let
U ⊂ V be a non-empty Zariski open subset, and let F : U → W be a regular
function. Then (U,F ) defines a rational map Ψ : V 99KW .

Proof. Using Definition 11.2 it’s immediate that (U,F ) defines a rational map
Ψ : V 99K Ak. By assumption F (U) ⊂ W , but the set of regular points of Ψ
might be larger than U so we must check that any additional regular points still
get mapped into W .
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Let U ′ ⊂ V be the set of all regular points of Ψ, and let h be any polynomial
that vanishes on W . Then h ◦Ψ is a regular map from U ′ to C and it vanishes
on the subset U ⊂ U ′. By Proposition 8.15 h ◦Ψ must be the zero function on
the whole of U ′. This holds for any h ∈ IW so Ψ(U ′) ⊂W .

Next we want to talk about ‘pulling-back’ rational functions along rational
maps.

Suppose V ⊂ An and W ⊂ Ak are irreducible. Let Ψ : V 99KW be a rational
map, and let φ be a rational function on W . If we write down Ψ explicitly it’s
just a k-tuple

(f1/g1, ..., fk/gk)

of rational functions on An, and φ is just a rational function on Ak. Then
naively, the composition of φ and Ψ is just:

Ψ∗(φ) = φ ◦Ψ = φ

(
f1
g1
, ...,

fk
gk

)
∈ C(x1, ..., xn) (11.6)

If p ∈ An is a regular point of Ψ, and Ψ(p) is a regular point of φ, then certainly
φ(Ψ(p)) is given by evaluating the expression above at the point p.

The problem is that rational functions are not regular everywhere, so we
must be slightly careful.

Example 11.7. Let
Ψ = (t, 1/t) : A1 99K A2

as in the previous example, and let:

φ =
1

xy − 1
∈ C(x, y)

If try naively to compose φ and Ψ we get

φ ◦Ψ : t 7→ 1

t( 1
t )− 1

=
1

0

which is nonsense. The problem is of course that φ is not regular anywhere on
the image of Ψ, so we can’t define the value of φ ◦Ψ at any point.

We’ve seen this before in Example 10.1: the rational function 1/(xy − 1)
doesn’t define a rational function on V (xy − 1). 4

To avoid this problem we introduce the following definition:

Definition 11.8. A rational map Ψ : V 99KW is called dominant if the image
of Ψ is not contained in any proper affine subvariety of W .

In other words, Ψ is dominant if the Zariski closure of the image of Ψ is the
whole of W .

Lemma 11.9. If Ψ : V 99K W is dominant, and φ ∈ C(W ) is any rational
function on W , then there is a rational function Ψ∗(φ) ∈ C(V ) which agrees
with the composition φ ◦Ψ wherever this is defined.

32



Proof. Let U ⊂ V be the regular points of Ψ, and U ′ ⊂W be the regular points
of φ. Then Ψ and φ define regular functions:

F : U →W and G : U ′ → C

The complement of U ′ is an affine subvariety, so Φ being dominant ensures that
F−1(U ′) is non-empty. Then

G ◦ F : F−1(U ′)→ C

is a regular function, and (the equivalence class of) this data is a rational func-
tion on V .

In practice this procedure is very simple, if we write Ψ and φ down explicitly
then the composition Ψ∗(φ) is just given by plugging the components of Ψ into φ,
as in (11.6). On the the open subset F−1(U ′) ⊂ V we really are just composing
functions, and nothing clever is happening. The point of the above lemma is
that even if this subset is not the whole of V then we can still make sense of
Ψ∗(φ) as a rational function on V .

Obviously every point in F−1(U ′) is a regular point of Ψ∗(φ). However it’s
important to realise that Ψ∗(φ) might have more regular points than this.

Example 11.10. Let Ψ = (t, 1/t) : A1 99K A2 again, and let φ = x2y ∈ C(x, y).
Then

Ψ∗(φ) = t2
1

t
= t ∈ C(t)

which is regular everywhere. So even though Ψ is not regular at the point t = 0,
the composition Ψ∗(φ) is regular at this point.

This is another good demonstration of why ‘partially-defined regular func-
tions’ are subtle; at first sight we can only define φ ◦Φ on the open set {t 6= 0},
but it actually extends to a regular function on the whole of A1. 4

If we have a dominant rational map Ψ : V 99K W between two irreducible
affine varieties we get a function

Ψ∗ : C(W ) −→ C(V )

by sending φ to Ψ∗(φ). It’s easy to see that this function is a homomorphism
of fields, and also C-linear.

Proposition 11.11. Let V and W be irreducible affine varieties. We have a
bijection:{

Dominant rational
maps

V 99KW

}
∼−→
{

C-linear field
homomorphisms

C(W )→ C(V )

}
Ψ 7→ Ψ∗

Proof. This is very similar to Proposition 6.8 so we won’t fill in all the details.
Say W ⊂ Ak, and let y1, ..., yk be the co-ordinates on Ak. If we have a field
homomorphism α : C(W )→ C(V ) then each α(yi) is a rational function on V ,
and these form the components of a rational map Ψ : V 99K Ak. The fact that
α lands in W , and is a dominant map to W , follows from the fact that α is
well-defined on C(W ).
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Example 11.12. Let Ψ : A2 99K A2 be the rational map:

Ψ(x, y) =

(
x

y
,

1

x

)
Let’s use (s, t) for the co-ordinates on the target A2. Then

Ψ∗ : C(s, t)→ C(x, y)

is the field homorphism defined by Ψ∗(s) = x/y and Ψ∗(t) = 1/x.
Now let Φ : A2 99K A2 be the rational map:

Φ(x, y) =

(
x

y
,
y

x

)
This is not dominant, its image is contained in the subvariety V = V (st − 1).
Correspondingly if we try to define a field homomorphism Φ∗ : C(s, t)→ C(x, y)
by declaring Φ∗ : s 7→ x/y and t 7→ y/x then we fail, because Φ∗(1/(st − 1))
doesn’t make any sense.

However, Φ does define a dominant rational map Φ : A2 99K V . It’s easy to
see that C(V ) ∼= C(s) (since t = 1/s ∈ C(V )), and we have a field homomor-
phism:

Φ∗ : C(V )→ C(x, y)

s 7→ x/y

4

Now we can talk about composing rational maps in general. Suppose we
have two rational maps Ψ : V 99KW and Φ : W 99K X. We’d like to define the
‘composition’ as a rational map:

Φ ◦Ψ : V 99K X

But we need to make the following assumption:

There is at least one point x ∈ V such that x is regular for Ψ and
Ψ(x) is regular for W .

Let’s write U ⊂ V for the set of regular points of Ψ and U ′ ⊂ W for the
set of regular points of Φ, and let U ′′ = Ψ−1(U ′) ∩ U . This subset is Zariski
open, and our assumption is that it is non-empty. Then Φ ◦Ψ defines a regular
function from U ′′ to W and hence (by Lemma 11.5) it defines a rational map
from V to W . Note:

• If U ′′ is non-empty then it must be ‘almost all’ of V . On this subset we
are just composing two functions, but outside this subset the composition
doesn’t make sense. If U ′′ was empty then the composition wouldn’t make
any sense, even as a rational function.

• In practice composing rational maps is easy, we just compose their compo-
nents in the obvious way (11.6). But if you haven’t checked the hypotheses
this might produce nonsensical answers!
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• If we assume Ψ is dominant then Φ ◦ Ψ makes sense for any Ψ. If we
assume that Φ is regular then Φ ◦Ψ makes sense for any Ψ.

Example 11.13. Let V = V (y2−x3) ⊂ A2, the cusp singularity. Since x /∈ IV
the expression y/x is a rational function on V , i.e. it’s a rational map:

Ψ =
y

x
: V 99K A1

In Example 6.12 we considered the regular map:

F : A1 → V

t 7→ (t2, t3)

Since Ψ is certainly regular on V \ (0, 0), and F is surjective and regular every-
where, both compositions

Ψ ◦ F : A1 99K A1 and F ◦Ψ : V 99K V

are defined. The first composition is easy to compute, we have:

Ψ ◦ F : t 7→ t3/t2 = t

This is the identity map on A1, and it’s regular everywhere. This is slightly
surprising: F (0) = (0, 0), and Ψ(0, 0) isn’t defined, but still the composed
function Ψ ◦ F can be extended to t = 0 with no problems.

For the second composition we calculate

F ◦Ψ : (x, y) 7→
((y

x

)2
,
(y
x

)3)
and we claim this is the identity map on V . To see this, let’s restrict to the open
subset V \ (0, 0). Here we are just composing regular functions, and (x, y) ∈ V
means that y2 = x3, hence (y/x)2 = x and (y/x)3 = y. So the rational function
F ◦ Ψ is given by the identity map on this open subset, and it’s equivalent to
the identity map on V . Again this might look surprising, Ψ is not regular at
(0, 0) but the composition F ◦Ψ is regular everywhere.

So in some sense F and Ψ are each other’s inverses. But Ψ is not really a
function on V ! What’s really happening is that we have regular functions

Ψ : V \ (0, 0) −→ A1 \ 0 and F : A1 \ 0 −→ V \ (0, 0)

which are mutually inverse, so this is an isomorphism of quasi-affine varieties.
But the strange language of rational functions lets us view this as a ‘partially-
defined isomorphism’ between V and A1. 4

Let’s capture the phenomenon of the previous example in a definition.

Definition 11.14. A rational map Ψ : V 99KW between two irreducible affine
varieties is a birational equivalence if there exists a rational map Φ : W 99K V
such that both Ψ ◦ Φ and Φ ◦Ψ are defined, and Ψ ◦ Φ = 1W and Φ ◦Ψ = 1V .

If a birational equivalence exists we say V and W are birationally equiv-
alent, or just birational.
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Lemma 11.15. Two irreducible affine varieties V and W are birational if and
only if we can find Zariski open subsets U ⊂ V and U ′ ⊂ W such that U is
isomorphic to U ′.

Proof. Exercise.

An immediate corollary of Proposition 11.11 is:

Corollary 11.16. V and W are birational iff we can find a C-linear isomor-
phism of fields:

C(W )
∼−→ C(V )

Example 11.17.

1. From Example 11.13 the cusp V = V (y2 − x3) is birational to A1. So the
function field C(V ) must be isomorphic to C(t). What’s the isomorphism?
(Exercise.)

2. In Example 9.6 we considered the ODP singularity V = V (xy − z2), and
we showed that C(V ) is the field C(x, z). It follows that V is birational
to A2. What’s the birational equivalence? (Exercise.)

4

We now have a precise understanding of what information is carried in the
function field C(V ). Varieties V and W have the same function field iff their
birational, i.e. iff they become isomorphic once we cut out a subvariety from
both sides.

This means that field theory can tell us useful things about algebraic geom-
etry. For example:

Theorem 11.18. Any finitely-generated field extension of C is the fraction field
of C[x1, ..., xn]/(f) for some n ∈ N and some irreducible polynomial f .

This theorem is not particularly difficult to prove if you know some things
about field extensions, but we won’t do it. However, applying it to function
fields tells us:

Corollary 11.19. Any irreducible affine variety V is birational to a hypersur-
face.

Proof. Apply the previous theorem to the field C(V ), then by Corollary 11.16
V is birational to the hypersurface V (f) ⊂ An.

12 Tangent spaces, singularities and dimension

It’s intuitively obvious that (for example) the cusp singularity V (y2− x3) ⊂ A2

is a ‘one-dimensional’ variety, and the ODP singularity V (xy − z2) is ‘two-
dimensional’. But giving a precise defintion of ‘dimension’ for a variety is not
so easy. There are at least three possible approaches, we will start with the
approach that uses tangent spaces. As a bonus, this will also lead us to a
precise definition of ‘singularity’.

If we draw a curve in R2, and pick a point on the curve, it’s clear what we
mean by the ‘tangent line’ to the curve through our chosen point. If the curve
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is defined by an equation f(x, y) = 0, you may remember that the tangent line
to p is the set of vectors that are orthogonal to the vector:

∇fp = (∂xf, ∂yf)|p

Similarly if we have a surface in R3 defined by f(x, y, z) = 0, and we choose a
point p on the surface, then there is a whole plane tangent to the surface at p,
and again it’s the set of vectors orthogonal to ∇fp. Based on these observations,
we’re going to write down a definition of the tangent space TpV to a point p on
an affine variety V . The tangent space TpV will be a vector space, so it has a
dimension, and this will lead us to the definition of dim(V ).

Let f ∈ C[x1, ..., xn] be a polynomial, so it’s a function f : An → C. Fix
p ∈ An. Recall that the derivative of f at p is the linear map

Dfp = (∂1f, ..., ∂nf)|p : Cn −→ C

where ∂if is the ith partial derivative of f . Note:

• We’re writing Cn not An, because here we do care about the vector space
structure. This function Dfp is a linear map.

• Even though derivatives are appearing, what we’re doing here is algebraic.
Of course in general differentiation needs analysis to make sense of it, but
if f is just a polynomial then the procedure which sends f to ∂if is a
purely algebraic operation on polynomials, i.e. it makes sense over any
field.

Definition 12.1. Let V ⊂ An be an affine variety and let f1, .., fk generate IV .
Fix p ∈ V . The tangent space to V at p is:

TpV = {v ∈ Cn, (Dfj)p(v) = 0, ∀j ∈ [1, k]}

TpV is a linear subspace of Cn, it’s the intersection of the kernels Ker(Dfj)p.
Another way to say this is that TpV is the kernel of the Jacobian matrix :

Jp =

∂1f1 ... ∂nf1
...

...
∂1fk ... ∂nfk


∣∣∣∣∣∣∣
p

: Cn → Ck

This definition doesn’t depend on your choice of generators for the ideal IV ,
because:

Lemma 12.2. A vector v lies in TpV if and only if Dfp(v) = 0 for every
f ∈ IV .

Proof. Exercise.

This lemma gives an alternative definition of TpV which is theoretically nicer
since it doesn’t involve any choices. But in practice we use the first definition.

Example 12.3. Let V = V (y2 − x3) ⊂ A2 (the cusp). Then IV is generated
by f = y2 − x3 and for any p ∈ A2 we have:

Dfp = (−3x2, 2y)|p
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If we choose p = (1, 1) this lies on V , and Dfp = (−3, 2), so:

TpV =
{

(v1, v2) ∈ C2, −3v1 + 2v2 = 0
}

This is a 1-dimensional subspace.
In fact, suppose p is any point of V apart from (0, 0). Then Dfp is a non-zero

vector, hence the linear map Dfp : C2 → C has rank 1, so its kernel TpV has
dimension 1. However, at the point p = (0, 0) ∈ V we have Dfp = (0, 0), and
T(0,0)V is the whole of C2. 4

Example 12.4. Let V = V (z − xy, z) ⊂ A3 (this is actually isomorphic to the
node V (xy) ⊂ A2). Then IV is generated by z − xy and z, and the Jacobian
matrix at a point p is:

Jp =

(
−y −x 1
0 0 1

)∣∣∣∣
p

: C3 → C2

The points of V fall into three types, and we look at each in turn:

1. p = (x, 0, 0) for x 6= 0. Then the rank of Jp is 2, so dimTpV = 1. In fact
TpV is the subspace 〈(1, 0, 0)〉 ⊂ C2, regardless of the value of x.

2. p = (0, y, 0) for y 6= 0. Again the rank of Jp is 2 and dimTpV = 1. Also
TpV = 〈(0, 1, 0)〉 for any y.

3. p = (0, 0, 0). Here the rank of Jp drops to 1, so the dimension of TpV
jumps up to 2. It’s the subspace spanned by (1, 0, 0) and (0, 1, 0).

4

When you’re computing tangent spaces it’s important to make sure that
your chosen polynomials really do generate IV .

Example 12.5. Let V = V (x2) ⊂ A2, which is the y-axis. If we set f = x2

then:
Df |(x,y) = (2x, 0) : C2 → C

At any point (0, y) ∈ V this linear map is zero, so you might conclude that TpV
is 2-dimensional at every point. But this is obviously wrong since V is a line!
Of course the mistake is that that x2 doesn’t generate IV , and if we set f = x
instead then we get the correct answers. 4

Examples 12.3 and 12.4 show an important feature: the dimension of TpV is
‘generally’ constant, but at certain special points it jumps up to higher values.

Definition 12.6. Let V be an irreducible affine variety. The dimension of V
is:

min
p∈V

dimTpV

If p ∈ V is such that dimTpV > dimV we call p a singular point of V

Points that are not singular are called either non-singular points or regu-
lar points. We’ll try to use the former to avoid confusion with ‘regular points’
of rational functions. Unfortunately the latter is more common.
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Example 12.7. From Example 12.3 we see that the cusp V (y2−x3) has dime-
sion 1, and (0, 0) is the only singular point. 4

Why do we assume V is irreducible in this definition?

Example 12.8. Let

V = V (xz, yz) ⊂ A3

= V (z) ∪ V (x, y)

which is the union of the x, y-plane and the z-axis. If we take a point p =
(x, y, 0) ∈ V , where (x, y) 6= (0, 0), then

TpV =
〈
(1, 0, 0), (0, 1, 0)

〉
⊂ C3

which is 2-dimensional. But if we take a point p = (0, 0, z) on the other irre-
ducible component (with z 6= 0) then

TpV =
〈
(0, 0, 1)

〉
⊂ C3

which is 1-dimensional. At the origin the tangent space is the whole of C3.
So the minimum value of TpV is 1, but this misses the geometric fact that

one of the irreducible components of V is 2-dimensional. Also it doesn’t seem
right to declare that every point in V (z) is ‘singular’, only the origin should be
a singular point. 4

Some authors define the dimension of a reducible variety to be the maximum
of the dimension of each irreducible component, so the previous example would
have dimension 2. But in my opinion it’s more helpful to say that a reducible
variety might be a union of varieties of different dimensions, and not try to
assign it a single dimension.

However, we can generalise the definition of a singular point to reducible
varieties. Before we do so, observe that in the examples we’ve seen so far the
set of singular points in V is always a subvariety, so the set of non-singular
points is Zariski open. In fact this is always true.

Lemma 12.9. Let V ⊂ An be an irreducible affine variety. Then the set of
singular points of V is an affine subvariety of V .

Proof. Suppose V ⊂ An, and IV = (f1, ..., fk), and dimV = d. Then the set of
singular points in V is the locus where the Jacobian matrix

J =

∂1f1 ... ∂nf1
...

...
∂1fk ... ∂nfk


has rank < n− d. Now recall two facts from linear algebra:

• If M is an k × n matrix then an (r × r) minor of M is a square matrix
obtained by deleting k − r rows and n− r columns from M .

• The rank of M is < r if and only if the determinant of every r × r minor
of M is zero.
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(This is elementary to prove, just put M in echelon form.) Since J is a matrix of
polynomials the (n−d)×(n−d) minors of J are polynomials. These polynomials
cut out the singular locus, so it’s a subvariety of V .

In fact we could prove a bit more here. Let’s define a function

d : V −→ N
p 7→ dimTpV

and set V≥k = {p ∈ V, d(p) ≥ k} for each k ∈ N. The proof of the previous
lemma shows that each V≥k is an affine subvariety. By definition V = V≥dimV

and V≥(dimV+1) is the singular locus. For k > dimV + 1 the subvarieties V≥k
are a chain of subvarieties of the singular locus, consisting of ‘worse and worse’
singular points.

The set of non-singular points is the Zariski open set:

V \ V≥(dimV+1)

The function d is constant (and equal to dimV ) on this open set and it jumps
up in value outside this set. This suggests how we should define a singular point
on a reducible variety.

Definition 12.10. Let V be any affine variety. We say a point p ∈ V is a non-
singular point (or regular point) if there exists a Zariski open neighbourhood
U ⊂ V of p such that:

dimTqV = dimTpV for all q ∈ U

If not we say p is a singular point.

So p is non-singular if d is constant in a Zariski neighbourhood of p. We
leave it as an exercise to verify that when V is irreducible this definition agrees
with our previous one (Definition 12.6).

Example 12.11. If V = V (xz, yz) then the origin is the only singular point
(exercise). 4

Why is our definition of dimension so complicated? If V = V (f1, ..., fk) ⊂ An
then V is cut out of an n-dimensional space by k equations, so isn’t it obvious
that dimV = n− k? Actually no, this is clearly false in general.

Example 12.12. Let V = V (x, y, x − y) ⊂ A3, which is the z-axis. This is
1-dimensional not 0-dimensional. 4

OK, but in this example clearly we could have set V = V (x, y) instead. So
perhaps you’d like to write:

(Incorrect) Definition. Let V ⊂ An be an affine variety and let f1, ..., fk be
a minimal set of generators for IV . Then the dimension of V is n− k.

Example 12.13. Let V = V (xy, xz, yz) ⊂ A3, which is the union of the three
axes. It’s possible to show that this ideal cannot be generated by less than three
polynomials, so under the above definition we’d have to say that dimV = 0.
But clearly the dimension of V should be 1. 4
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If you object that this example is reducible, consider the next one:

Example 12.14. Define:

F : A2 −→ A4

(s, t) 7→ (s3, s2t, st2, t3)

If we use x, y, z, w as co-ordinates on the target A4 then clearly the image of F
is contained in:

V = V (xz − y2, yw − z2, xw − yz)
This variety is called the twisted cubic. With a little messing around you can
show that F is a surjection onto V , which implies that V is irreducible (Lemma
6.13). Also it’s possible to prove that IV cannot be generated by fewer than
three polynomials.

However the dimension of V is 2, not 1. The Jacobian matrix of these
polynomials is z −2y x 0

0 w −2z y
w −z −y x


and you can check that this matrix has rank 2 at every point in V , except for
the origin where it has rank zero. So dimV = 2 and the origin is the only
singular point. 4

However, for hypersurfaces the obvious guess for the dimension is always
correct.

Lemma 12.15. Let V = V (f) ⊂ An be an irreducible hypersurface. Then
dimV = n− 1.

Proof. Exercise.

Suppose V ⊂ An and W ⊂ Ak are isomorphic affine varieties, via some
isomorphism F : V

∼−→ W . Since V and W are ‘the same’, if we pick a point
p ∈ V then we should expect TpV and TF (p)W to be ‘the same’ vector space.
But TpV is (by definition) a subspace of Cn, whereas TF (p)W is a subspace of

Ck, so they are not literally the same vector space. The correct statement is
that they are isomorphic.

Recall that if F = (f1, ..., fk) : An → Ak is a regular map (or in fact any
smooth function) then for p ∈ An the derivative of F at p is the linear map

DFp : Cn → Ck

given by the Jacobian matrix with entries (∂jfi|p).

Lemma 12.16. Let V ⊂ An and W ⊂ Ak be affine varieties and let F : V →W
be a regular map. Pick p ∈ V and set q = F (p).

(i) We have an induced linear map:

DFp : TpV −→ TqW

(ii) If G : W → X is a second regular map then:

D(G ◦ F )p = DGq ◦DFp
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Proof. (i) Pick polynomials representing each component of F , so we get a

regular map F̂ : An → Ak. For p ∈ V we get a linear map

DF̂p : Cn → Ck

and our first claim is that this maps the subspace TpV to the subspace TqW .

To see this, pick any h ∈ IW . Then h ◦ F̂ ∈ IV (because F̂ (V ) ⊂ W ) and
differentiating gives

Dh|q ◦DF̂p = D(h ◦ F̂ )p

by the chain rule. If v ∈ Cn lies in TpV then D(h ◦ F̂ )p(v) = 0 by definition, so

DF̂p(v) lies in the kernel of Dh|q. This holds for any h ∈ IW , so DF̂p(v) lies in
TqW . Hence we can define

DFp : TpV → TqW

to be the restriction of DF̂p to TpV . However, we need to show that this

linear map doesn’t depend on our choice of F̂ . We can change F̂ by taking
a polynomial g ∈ IV and adding it to (say) the first component, then this is

another representative of F . This changes the first row of the matrix DF̂p, by
adding the row vector Dgp. However, if v is a vector in TpV then Dgp(v) = 0,

so DF̂p(v) does not change.

(ii) Just pick representatives F̂ and Ĝ for F and G and apply the usual chain
rule.

Corollary 12.17. If F : V
∼−→ W is an isomorphism of affine varieties then

for any p ∈ V we get a linear isomorphism:

DFp : TpV
∼−→ TF (p)W

This shows that the tangent space TpV is in some sense ‘intrinsic’ to the
variety V , it doesn’t depend on the embedding V ⊂ An. In particular dimTpV =
dimTF (p)W . It follows immediately that:

1. dimV = dimW (assuming V and W are irreducible).

2. A point p ∈ V is a singular point iff F (p) is a singular point of W .

This is all reassuring.

We end this section with a bit of a digression. We’ve have repeatedly claimed
that the ring C[V ] knows everything about the variety V , for example we saw
in Lemma 4.5 that a point of p corresponds to a C-linear ring homomorphism:

evp : C[V ]→ C

If our claim is true, the ring C[V ] must also know what the tangent space TpV
is. How can we extract this information?

The trick is to consider the ring

R = C[t]/(t2)

(sometimes called the dual numbers). This is not the co-ordinate ring of an
affine variety, since the ideal 〈t2〉 is not radical. Intuitively, you could think
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that it describes a point which has been ‘thickened up’ to order 1. The obvious
quotient homomorphism C[t]→ R remembers the constant and linear terms of
a polynomial f , equivalently it remembers both the value f(0) at the origin,
and also the value of the first derivative f ′(0).

Let’s write
q : R→ C

for the (C-linear) homomorphism which sends t to zero.

Proposition 12.18. Fix a point p ∈ V . There is a bijection

TpV
∼−→

{
C-linear homomorphisms α : C[V ]→ R

such that q ◦ α = evp

}
Proof. Say V ⊂ An, so C[V ] is generated by the co-ordinates x1, ..., xn. A
(C-linear) homomorphism α : C[V ]→ R is determined by the elements

α(xi) = ai + bit ∈ R, for i = 1, ..., n

where each ai, bi ∈ C. Requiring that q ◦ α = evp says exactly that

(q ◦ α)(xi) = ai = evp(xi)

so a = (a1, ..., an) must be the co-ordinates of the point p. Now pick generators
f1, ..., fk for IV . By definition we must have α(fj) = 0 for all j (since α is
defined on the quotient ring C[V ]), but:

α(fj) = fj(a1 + b1t, ..., an + bnt)

= fj(a) + t

n∑
i=1

∂ifj(a)bi ∈ R

The second equality here comes from Taylor expanding around the point a, but
this a genuine equality not an approximation, because t2 = 0 in the ring R.
Now fj(a) = 0 automatically because p ∈ V , so our possible homomorphisms α
are given by vectors (b1, ..., bn) which are orthogonal to Dfj(a) for each j. This
is exactly the tangent space TpV .

It’s possible to improve this result by defining a vector space structure on
the set of α’s, then the bijection becomes an isomorphism of vector spaces.

13 Other approaches to dimension

We saw above (Corollary 12.17) that if two irreducible affine varieties V and W
are isomorphic then they have the same dimension. This is hardly surprising,
but we can say something stronger:

Proposition 13.1. If V and W are birational then dimV = dimW .

This also shouldn’t be surprising, since birational means ‘almost isomorphic’.

Proof. If V and W are birational then we can find Zariski open subsets U ⊂ V
and U ′ ⊂W and an isomorphism F : U

∼−→ U ′ (Lemma 11.15). The set of non-
singular points in V is Zariski open, so since V is irreducible it must intersect
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with U , i.e. there is a point p ∈ U such that dimTpV = dimV . Lemma
12.16 and Corollary 12.17 work for regular maps between quasi-affine varieties
(exercise), so we get an isomorphism:

DFp : TpV
∼−→ TF (p)W

Hence dimW ≤ dimV , and the reverse argument shows dimV ≤ dimW .

But the birational equivalence class of V is detected by the function field
C(V ). So it must be possible to detect dimV just from the field C(V ). Here’s
how you do it.

Definition 13.2. Let L/K be a field extension. A set α1, ..., αn ∈ L is alge-
braically independent over K if they satisfy no non-trivial polynomial over
K, i.e. if the subfield K(α1, ..., αn) ⊂ L is isomorphic to the field K(x1, ..., xn)
of rational functions over K in n variables.

The transcendence degree of L over K is the maximal size of a set of
algebraically independent elements. We denote it by:

Tr degK L

Some facts from field theory:

• If [L : K] is finite then the extension is algebraic and Tr degK L = 0.

• Tr degK K(x1, ..., xn) = n. This is not by definition! A priori it could be
bigger than n.

• If M is an extension of L then Tr degK M = Tr degL M + Tr degK L.

Now suppose K is a finitely-generated extension of C. We claimed in Theorem
11.18 that K must be the fraction field of C[x1, ..., xn]/(f) for some irreducible
polynomial f . We can assume WLOG that xn appears in f , then the set
{x1, ..., xn−1} ⊂ K is algebraically independent. Moreover we can think of f
as a polynomial in the variable xn with coefficients in the field C(x1, ..., xn−1),
then it’s clear that K is an algebraic extension of C(x1, ..., xn−1). Using the
above facts it follows that:

Tr degC K = n− 1

Proposition 13.3. Let V be an irreducible affine variety. Then:

Tr degC C(V ) = dimV

Proof. Since C(V ) is a finitely-generated extension of C we can find an irre-
ducible polynomial f in n-variables such that C(V ) ∼= C(W ) where W is the
hypersurface W = V (f) ⊂ An. By the calculation above, Tr degC C(V ) = n−1.
But V is birational to W , so dimV = dimW = n− 1 by Proposition 13.1 and
Lemma 12.15.

Example 13.4. Let V = V (xy− z2), the ODP singularity. This is a hypersur-
face in A3 so dimV = 2. Also we argued in Example 9.6 that C(V ) ∼= C(x, z),
which has transendence degree 2. 4
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Proposition 13.3 gives us an alternative definition of dimension, we could
define the dimension of V to be the transcendence degree of C(V ) (as before
this only makes sense if V is irreducible). Let’s very briefly discuss a third
possible definition, based on chains of irreducible subvarieties.

What is the smallest possible irreducible subvariety of V ? The answer is
easy, any single point Z0 = {p} is an irreducible subvariety of V , and we can’t
get any smaller. Now suppose Z1 ⊂ V is an irreducible subvariety containing
Z0, but strictly bigger. Then Z1 can’t be a finite set (it would be reducible), so
the minimal possibility is that dimZ1 = 1. Keep going, making minimal choices
at each step, and you’ll get a chain of irreducible subvarieties:

Z0 ( Z1 ( ... ( Zk−1 ⊂ Zk = V

The best case scenario is that dimZp = p at each step, and k = dimV .

Definition 13.5. The Krull dimension of V is the maximal length of a
strictly-increasing chain of irreducible subvarieties in V .

Theorem 13.6. The Krull dimension of V equals dimV .

This is difficult theorem and requires a lot of algebra. Let’s just remark that
this should remind you of the definition of a Noetherian ring, since chains of
subvarieties in V correspond to chains of ideals in C[V ]. The geometric meaning
of ‘Noetherian’ is that your space is finite-dimensional. This is why it’s such an
important condition.
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II Projective varieties

There are some ways in which affine varieties are less-than-ideal spaces. For
example, an affine variety in An will always go ‘off to infinity’, unless it’s a
finite set. This means it is not compact in the usual topology (in the Zariski
topology everything is compact, but that’s just because the Zariski topology is
weird). For comparison, the unit sphere S2n−1 ⊂ An is a bounded, compact
space.

Since compact spaces generally have better properties it would be nice if we
could find them in the setting of algebraic geometry. The solution is to consider
subvarieties not in affine space, but in projective space.

14 Projective space

You may previously met the Riemann sphere, this is a copy of the complex plane
C with an additional point “infinity”. We identify it with the 2-dimensional
sphere S2 by putting “infinity” at the north pole, then using stereopraphic
projection from the north pole to give a bijection between the rest of S2 and
the plane R2, which we identify with C. Under this bijection the south pole
maps to the origin 0 ∈ C and the equator maps to the unit complex numbers.

In algebraic geometry we call this space P1, which means 1-dimensional
projective space, or sometimes the projective line. The correct way to define it
is:

Definition 14.1. P1 is the set of 1-dimensional complex subspaces of C2.

This definition takes some time to get used to, and it may not be clear yet
why this is the same as the Riemann sphere.

To start understanding it, let’s think about the analogue over the real num-
bers:

P1(R) = {1d R subspaces of R2}

Of course there’s an analogue P1(K) for any field K; really to be consistent we
should have written P1(C) above, but for us C is the default field.

A 1-dimensional subspace of R2 is just a straight line through the origin.
Any point (x, y) ∈ R2, apart from the origin, lies in a unique such line. We use
the notation x :y to denote this line, i.e.

x :y = {(µx, µy), µ ∈ R} ⊂ R2

Obviously if λ is any non-zero real number then λx :λy is the same line as x :y.
So P1(R) can also be described as ‘R2 without the origin, modulo rescaling’:

P1(R) =
R2 \ (0, 0)

(x, y) ∼ (λx, λy), ∀λ ∈ R∗

From this point-of-view x : y denotes the equivalence class of (x, y). Note that
(0, 0) does not determine a point in P1(R) and 0:0 is meaningless.

How can we parametrize points in P1(R)? One option is to use gradient,
which maps a line x :y to its slope y/x ∈ R. For every real number t ∈ R there
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is a unique line with that gradient, namely the line through (1, t). So we have
an injection:

R ↪→ P1(R)

t 7→ 1: t

But this map is not a surjection, it misses exactly the line 0 : 1 (the y-axis).
Another way to say this is to think about the line {x = 1} ∼= R ⊂ R2. A line
through the origin x : y intersects this line in the single point 1 : (y/x), except
for the y-axis which doesn’t intersect it at all. So:

P1(R) = {x :y, x 6= 0} t {0:1}
∼= R t {one point}

The line 0 : 1 has “infinite slope”, so we can think of P1(R) as a copy of R with
an extra point ‘at infinity’. But it’s important to realise that there is nothing
special or different about the point 0 : 1 in P1(R), this is just an artifact of
our parametrization. We could instead have mapped a line x :y to the number
x/y ∈ R. This makes sense for every line except the x-axis 1 : 0, and it has an
inverse:

R ↪→ P1(R)

s 7→ s :1

From this point-of-view, the line 1:0 is the point ‘at infinity’.
We’ve constructed two bijections:

P1(R) \ 0:1
∼−→ R P1(R) \ 1:0

∼−→ R
x :y 7→ y/x x :y 7→ x/y

These are called the standard charts on P1(R). Observe that if a line maps to
t ∈ R under the first chart, and t 6= 0, then it maps to s = 1/t under the other
chart. If t = 0 then this line is not in the domain of the second chart. The
domains of the charts cover P1(R) between them, so another way to think of
P1(R) is as a union:

P1(R) ∼= R ∪ R

This is not-at-all a disjoint union, almost all points lie in the overlap of the two
charts.

Remark 14.2. Everything we’ve done so far is algebraic, and will work over C
(or any other field). There are two more ways to think about P1(R) which are
helpful but involve non-algebraic constructions. Both of them make it clear that
P1(R) is the circle S1.

(i) Consider the semi-circle in R2 with radius 1, lying in the region {x ≥ 0}.
This semi-circle intersects every line once, except for the y-axis which it
hits at both ends. So we can identify P1(R) with a unit interval that has
its ends glued together:

P1(R) ∼=
[0, 1]

0 ∼ 1
∼= S1
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(ii) Consider the circle of radius 1 in R2. It intersects every line in exactly
two points, which are antipodal. So:

P1(R) ∼=
S1

(x, y) ∼ (−x,−y)
∼= S1

Construction (i) has no analogue over C, construction (ii) does but it’s con-
siderably harder to understand (it’s called the Hopf fibration).

Now let’s get back to P1 = P1(C). A 1d subspace of C2 (a line) is the
complex span of some point (x, y) 6= (0, 0) ∈ C2, and as before we write x :y for
this subspace:

x :y =
{

(µx, µy), µ ∈ C
}
⊂ C2

So any (x, y) ∈ C2 \(0, 0) defines a point x :y ∈ P1. As before P1 is the quotient:

P1 =
C2 \ (0, 0)

(x, y) ∼ (λx, λy), ∀λ ∈ C∗

We can parametrize points in P1 by their ‘complex gradient’ x : y 7→ y/x ∈ C,
this makes sense for every point except 0:1, and has an inverse:

A1 ∼−→ P1 \ 0:1

z 7→ 1:z

As in the real case, this means we can decompose P1 as:

P1 = {x :y, x 6= 0} t {0:1}
= A1 t {one point}

So P1 is the affine line A1 plus one extra point ‘at infinity’. This is the Riemann
sphere.

Once again there is nothing special about the point 0:1, it’s only ‘at infinity’
because of our particular choice of chart. We have a second standard chart

P1 \ 1:0
∼−→ A1

x :y 7→ x/y

w :1← [ w

and using this chart makes 1 :0 the point ‘at infinity’. The domains of the two
standard charts cover P1, so

P1 = A1 ∪ A1

where as before a point z 6= 0 ∈ A1 in the first chart corresponds to the point
w = 1/z ∈ A1 in the second chart. If we identify P1 with the sphere S2, then
these two charts are exactly the stereographic projection maps from the north
and south poles.

Here’s two more things to note:

• We’ve defined two ‘standard charts’, but this depended on using the stan-
dard basis for C2. We could use another basis (i.e. apply a linear co-
ordinate change) and we’ll get other charts. For example

x :y 7→ x

x− y
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defines a bijection between P1 \ 1 : 1 and A1. So there really is nothing
special about 1:0 and 0:1.

• Later you may be tempted to think or write something like:

P1 → C
x :y 7→ x

But this is not a well-defined function! The notation x : y means an
equivalence class, and x :y = λx :λy for any non-zero λ. Only the function
x/y makes sense, and even this only makes sense in the subset P1 \ 1:0.

Now it’s time to generalize to higher dimensions.

Definition 14.3. Pn is the set of 1-dimensional complex subspaces of Cn+1.
We call it n-dimensional projective space.

Any point in Cn+1 (except the origin) spans a unique 1-d subspace, so it
defines a point in Pn. So Pn can be viewed as the quotient:

Pn =
Cn+1 \ 0

x ∼ λx, ∀λ ∈ C∗

Given a point (x0, ..., xn) ∈ Cn \ 0, we write

x0 : ... : xn ∈ Pn

for the corresponding equivalence class, or 1-d subspace.
Let’s focus on the case n = 2 so we don’t get overwhelmed by notation. A

point in P2 is a class x :y :z for a point (x, y, z) ∈ C3 \ (0, 0, 0), and

x :y :z = λx :λy :λz

for any non-zero λ ∈ C. To parametrize points in P2 we can start by considering
the plane

Π1 = {z = 1} ⊂ C3

Most lines x : y : z intersect the plane Π1 in a single point, (x/z, y/z, 1). The
only lines that don’t are the lines lying in the (x, y)-plane, i.e. lines of the form
x :y ::0. So we have a bijection:

P2 \ {z = 0} ∼−→ A2

x :y :z 7→ (x/z, y/z)

s : t :1← [ (s, t)

This is the first ‘standard chart’ on P2. Notice that the set of points missed by
this chart is a copy of P1, so we could decompose P2 as

P2 = A2 t P1

where the A2 is all the lines x : y : z with z 6= 0, and the P1 is the lines with
z = 0. To form P1 we took A1 and added an extra point ‘at infinity’; to form
P2 we take A2 and add a whole P1 at infinity. When we get out to infinity we
remember the line we were travelling along.
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You may find the real picture helpful here. The plane R2 can be shrunk
homeomorphically to a disc. Now add the boundary of the disc so we have
points at infinity, but antipodal points on the boundary must be glued together
because they represent the same line, so the boundary becomes P1(R) (see part
(ii) of Remark 14.2). This gives us a picture of P2(R), which is a 2-dimensional
non-orientable manifold.

It’s pretty hard to visualize P2 over the complex numbers because it’s a
2-dimensional complex manifold, so a 4-dimensional real manifold. It’s not
the sphere S4 or the torus T 4 (the fact that P1 ∼= S2 is a coincidence that
doesn’t generalize to higher dimensions). Nevertheless P2 is one of the easiest
4-dimensional manifolds to work with.

When we say that the lines with z = 0 lie ‘at infinity’ this is only from the
point-of-view of the first standard chart. There are two more standard charts:

P2 \ P1
x:0:z

∼−→ A2 P2 \ P1
0:y:z

∼−→ A2

x :y :z 7→ (x/y, z/y) x :y :z 7→ (y/x, z/x)

So we can also decompose P2 as

P2 = A2 ∪ A2 ∪ A2

by taking the domains of the three standard charts (the subsets where either x, y
or z are not zero), and these subsets have big overlaps. Just as in the P1 case
these standard charts are not special, they depended on us using the standard
basis for C3. If we pick a different basis we get other charts.

Everything we’ve done for P2 generalizes immediately to higher dimensions.
Pn is covered by n+ 1 standard charts

Pn \ {xk = 0} ∼−→ An

x0 :x1 : ... :xn 7→ (x0/xk, x1/xk, ...k̂..., xn/xk)

so Pn = An ∪ An ∪ ... ∪ An with big overlaps. The complement of each chart is
a copy of Pn−1, because it’s the set of lines lying in the n-dimensional subspace
{xk = 0} ⊂ Cn+1. So each chart gives us a decomposition

Pn = An t Pn−1

into a copy of An and a Pn−1 ‘at infinity’.

15 Projective varieties

A projective variety is a certain kind of subset of Pn. First we need the following:

Definition 15.1. A polynomial f is homogeneous of degree d if every term
in f has degree d.

Example 15.2.

• x3 + x2y + 2xy2 is homogeneous of degree 3.

• x− y + 3π
4 z is homogeneous of degree 1.

• y2 − x3 is not homogeneous.

50



4

Observe that f is homogeneous of degree d iff it satisfies:

f(λx) = λdf(x), ∀x ∈ An, λ ∈ C

This means that if f is homogeneous (of any degree) and f(x) = 0 for some
x ∈ An, then f vanishes on the whole line spanned by x. If f is not homogeneous
then this is not true, e.g. y2 − x3 vanishes at (1, 1) but not at (2, 2).

Definition 15.3. Let f be a homogeneous polynomial in n + 1 variables. We
define

V(f) ⊂ Pn

to be the set of lines l ⊂ Cn+1 such that f vanishes on l. A subset of this form
is called a projective hypersurface.

Warning: A homogeneous polynomial does not define a function f : Pn → C.
The value of f(x) changes when we rescale x, since f(λx) = λdf(x), so f is not
a well-defined function on the set of lines. Only the set {f = 0} makes sense.

Example 15.4. Let f(x, y) = x2y+ 2xy2 = xy(x+ 2y), which is homogeneous
of degree 3. This f vanishes on exactly 3 lines:

1. {x = 0}, i.e. the line 0:1 ∈ P1.

2. {y = 0}, i.e. the line 1:0 ∈ P1.

3. {x+ 2y = 0}, i.e. the line 2:−1 ∈ P1.

So the corresponding projective hypersurface V = V(f) ⊂ P1 consists of
these 3 points.

Recall we have a standard chart A1 ↪→ P1 where x 7→ x :1. The intersection
of V with this chart is:

V ∩ A1
x =

{
x2 + 2x = 0

}
= {0} ∪ {−2}

This is an affine variety, cut out by the polynomial f(x, 1) (i.e. set y = 1 in f).
This affine variety only has 2 points, because we’ve missed the point 1:0. To get
a complete picture we must also consider the second standard chart A1 ↪→ P1

where y 7→ 1:y, intersecting with this chart gives:

V ∩ A1
y = {y + 2y2 = 0} = {0} ∪ {−1

2
}

The point y = 0 is the point we missed in the first chart, and in this chart
we miss the point 0 : 1. Also note that the point x = −2 in the first chart
corresponds to the point y = − 1

2 in the second chart, since x 7→ 1/x when we
change charts. 4

Example 15.5. Let f(x, y, z) = x, which is homogeneous of degree 1. It defines
a projective hypersurface

V = V(x) ⊂ P2

This V is the set of lines {0 : y : z} ⊂ P2, it’s just the complement of the
third standard chart. We said previously that this is ‘a copy of’ P1, the precise
statement is that V is isomorphic to P1, and we’ll prove this as soon as we’ve
defined isomorphisms for projective varieties. 4
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Here is a more interesting example.

Example 15.6. Let f(x, y, z) = xy− z2, which is homogeneous of degree 2. It
defines a projective hypersurface:

V = V(f) ⊂ P2

The first standard chart A2 ↪→ P2 is given by (x, y) 7→ x :y : 1, and intersecting
V with this chart gives the affine hypersurface:

V1 = V (xy − 1) ⊂ A2
x,y

This was our very first example of an affine variety, and we know it’s isomorphic
to the quasi-affine variety A1 \ 0 (Example 8.11).

What points have we missed? The complement of the first standard chart
is a copy of P1, it’s the set of lines:

P1
x:y = {x :y :0} ⊂ P2

x:y:z

The intersection of V with this P1 ‘at infinity’ is:

V ∩ P1
x:y = {x :y :0, xy = 0} = {1:0 :0} ∪ {0:1 :0}

This is a projective hypersurface in P1, it’s cut out by the polynomial f(x, y, 0)
obtained by setting z = 0 in f , and it consists of two points. So V consists of
V1 plus these two extra points.

The real picture is quite helpful here. Over the real numbers, the set {xy −
1 = 0} ⊂ R2 is a hyperbola. When we go out to infinity in R2 the hyberbola
has two asympotes, which are the x-axis and the y-axis. In P2(R) we add in
both of these points, making the hyperbola into the compact space S1.

What does V look like over the complex numbers? Since V1 is A1 \ 0 adding
a single point probably gives us A1, and then adding another point should give
us the Riemann sphere. So V probably looks like P1.

We can confirm this guess by using the other two standard charts. If we
intersect V with the second standard chart in P2 we get the affine hypersurface:

V2 = V (y − z2) ⊂ A2
y,z

This is the set of points (t2, t) and is isomorphic to A1. If we intersect V with
the third standard chart we get

V3 = V (x− z2) ⊂ A2
x,z

which is the set {(s2, s)} and is also isomorphic to A1. These two charts together
cover all of V, since the only point they miss is 0 :0 :1 which doesn’t lie in V. So
V consists of two copies of A1 glued together, and with a little more work you
can check that the gluing is given by s = 1/t, so the resulting space is exactly
P1.

This is all a bit heuristic, but later we will prove the precise statement which
is that V is isomorphic to P1. 4

A general projective variety is just an interection of projective hypersurfaces.
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Definition 15.7. A projective variety is a subset of Pn of the form

V = V(f1) ∩ V(f2) ∩ ... ∩ V(fk) ⊂ Pn

where f1, .., fk are homogeneous polynomials in n+ 1 variables.

So V is the set of lines which are the common vanishing locus of f1, ..., fk.
We could also write

V = V(f1, ..., fk)

like we did in the affine case. Note that each fi must be homogeneous, but they
don’t all have to have the same degree.

Most of our examples will be hypersurfaces because they’re simpler, but it’s
easy to write down examples which are not hypersurfaces.

Example 15.8. Let f(x, y, z) = xy − z2 as before and let g(x, y, z) = x − y.
These are two homogeneous polynomials in three variables, and they define a
projective variety:

V = V(f, g) ⊂ P2

Note that V(g) is the set of lines of the form x :x :z, so

V = V(f) ∩ V(g) = {x :x :z, x2 − z2 = 0} = {1:1 :1} ∪ {1:1 :−1}

consists of two points. 4

Say V = V(f) is a projective hypersurface in P2, for some homogeneous
f(x, y, z). As in some of our examples above, we can intersect V with the first
standard chart and get an affine hypersurface:

V1 = V (f(x, y, 1)) ⊂ A2
x,y

Perhaps you think we are restricting the function f to the chart {z 6= 0} ⊂ P2.
We are not! Because f is not a function on P2.

Is it possible to reverse this procedure? Suppose V ⊂ A2 is an affine hyper-
surface, is there some projective hypersurface V ⊂ P2 that gives us V in the
first standard chart? The answer is yes, because there is a way to turn any
polynomial g(x, y) into a homogeneous polynomial f(x, y, z).

Let’s write C[x, y, z]k for the set of homogeneous polynomials in three vari-
ables of degree k, this is a finite-dimensional vector space and it has a basis
{xaybzc, a + b + c = k}. Let’s also write C[x, y]≤k for the set of polynomials
in two variables with degree at most k, this is again a finite dimensional vector
space with a basis {xayb, a+ b ≤ k}. The map

C[x, y, z]k −→ C[x, y]≤k

f(x, y, z) 7→ f(x, y, 1)

is evidently a linear isomorphism. The inverse map is called homogenizing a
polynomial, on monomials it is the map:

xayb 7→ xaybzk−a−b

Suppose V (g) ⊂ A2 is an affine hypersurface, where g has degree k. Homog-
enize g to get a homogeneous polynomial f(x, y, z) of degree k. Then we get a
projective hypersurface V(f) ⊂ P2 such that the intersection of V with the first
standard chart is V . We call V the projective completion of V .
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Example 15.9. Let V = V (g) ⊂ A2 for g = y2 − x3 + x − 1 (this is an affine
elliptic curve). The corresponding homogeneous degree 3 polynomial is

f(x, y, z) = y2z − x3 + xz2 − z3

and then V = V(f) ⊂ P2 is a projective hypersurface (it’s a projective elliptic
curve), and the intersection of V with {z 6= 0} is V .

What points have we added? The complement of the first standard chart is
the P1 ‘at infinity’ where z = 0. So

V \ V = V ∩ P1
x:y:0 = {x :y :0, x3 = 0} = {0:1 :0}

is a single point. The real picture here is not misleading; if we plot y2 = x3−x+1
in R2 we see it has a single asymptote which is (a translate of) the y-axis. If
you have studied elliptic curves you will know that this extra point at infinity
is the unit for the group law. 4

Example 15.10. If V = V (xy − 1) ⊂ A2 then the projective completion is:

V = V(xy − z2) ⊂ P2

This adds two points to V , 1 :0 :0 and 0:1 :0, as we saw in Example 15.6. 4

Obviously this procedure generalizes to any dimension, if V = V (g) ⊂ An
is an affine hypersurface then it has a projective completion V = V(f) ⊂ Pn
obtained by homogenizing g. The extra points V\V live in the Pn−1 at infinity,
where the last co-ordinate is zero. In fact V \ V is a projective hypersurface in
Pn−1, cut out by the polynomial f(x1, ..., xn, 0). This polynomial consists of all
the highest-degree terms in g.

If V ⊂ An is not a hypersurface then it’s still possible to define the projective
completion V ⊂ Pn but there’s a subtlety (see exercises).

There is another way to relate projective varieties and affine varieties. Sup-
pose we have homogeneous polynomials f1, ..., fk ∈ C[x1, ..., xn], so they define
a projective variety V = V(f1, ..., fk) ⊂ Pn−1. Then these same polynomials
also define an affine variety:

V = V (f1, ..., fk) ⊂ An

Because the defining polynomials are homogeneous this V is of a special form.
If x ∈ An lies in V then so does λx for any λ ∈ C, i.e. the whole line spanned
by x lies in V . An affine variety with this property is called a cone. We say V
is the affine cone associated to the projective variety V.

Example 15.11. Let f(x, y, z) = xy − z2. This defines:

1. An affine cone V (f) ⊂ A3, which the 2-dimensional ODP singularity (Ex-
ample 9.6).

2. A projective hypersurface V(f) ⊂ P2 which we think is isomorphic to P1

(Example 15.6).

4
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The relationship between a projective variety V ⊂ Pn and the affine cone
V ⊂ An+1 is that:

V =
V \ {0}
x ∼ λx

Hopefully it’s intuitively clear that the dimension of V is one less than the
dimension of V ; we’ll prove this once we’ve defined dimension for projective
varieties.

Now suppose that W ⊂ An is an affine variety and that it’s a cone, i.e.
if x ∈ W then λx ∈ W for all λ. There’s an associated subset W ⊂ Pn−1
consisting of all the lines that lie in W , but it’s not instantly obvious that W is
a projective variety.

Example 15.12. Let:

W = V (xy − z, xy + z) ⊂ A3

= {(x, 0, 0)} ∪ {(0, y, 0)}

This is clearly a cone, but the defining polynomials were not homogeneous.
But we could have used the homogenous polynomials xy and z to generate
IW instead, then it becomes clear that W = V(xy, z) ⊂ P2 is a projective
variety. 4

What we just did can be done for any cone, because:

Lemma 15.13. If W ⊂ An is a cone then IW can be generated by homogeneous
polynomials.

Note that most polynomials in IW are not homogenous (look at the previous
example).

Proof. Any polynomial f ∈ C[x1, ..., xn] can be written uniquely as a sum of
homogeneous polynomials

f = fd + fd−1 + ...+ f1 + f0

simply by grouping together the terms in f which have the same degree.

Claim: If f ∈ IW then each homogeneous summand fi also lies in IW .
This claim immediately proves the lemma: take any generating set f, ..., g

for IW , split each generator into its homogeneous summands, then the set of all
these homogeneous summands fd, ..., g0 generates IW .

Now we prove the claim. Pick an f ∈ IW , and fix a point x ∈ W . Then
f(λx) = 0 for all λ ∈ C since W is a cone. But we can think of f(λx) as a
polynomial in the single variable λ, and:

f(λx) = λdfd(x) + λd−1fd−1(x) + ...+ λf1(x) + f0(x)

We know this polynomial vanishes for all λ so every coefficient must be zero, so
each fi vanishes at x, and this is true for all x ∈W .

Given this lemma we have a bijection between affine cones in An and pro-
jective varieties in Pn−1. This is a useful bijection because many properties of
projective varieties can be expressed in terms of their affine cones, and we’ve
already developed many results for affine varieties.
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16 Irreducibility, quasi-projective varieties, dimension

Some ideas from affine varieties can be easily imported to projective varieties.

Definition 16.1. A projective variety V ⊂ Pn is irreducible if it can’t be
written as a union V = V1 ∪ V2 of two proper projective subvarieties.

Proposition 16.2. Let V ⊂ Pn be a projective variety and let V = V ∩ An
be the intersection of V with a standard chart. If V is irreducible then V is
irreducible.

Proof. Exercise.

But the converse to this result is false: knowing that V is irreducible does
not imply that that V is irreducible.

Example 16.3. Let V = V(yz) = V(y) ∪ V(z) ⊂ P2
x:y:z. This is the union of

two copies of P1, meeting at a single point 1:0 :0.
If we intersect V with the chart {z 6= 0} we get V (y) ⊂ A2

x,y, which is a
copy of A1 and is irreducible. But V itself is reducible. This chart has missed
an entire irreducible component of V. 4

In the example above we could switch to the chart {x 6= 0} and get the
reducible affine variety V (yz) ⊂ A2

y,z, which reveals that V is reducible (by
Proposition 16.2). But it’s not hard to find examples of reducible varieties
which look irreducible in every standard chart (exercise).

So irreduciblity is not always easy to detect by looking in charts. To get a
stronger result we can look at the affine cone.

Lemma 16.4. If V ⊂ An is a cone and is reducible then there exist homogeneous
polynomials f, g /∈ IV such that fg ∈ IV .

Proof. If V is reducible then IV is not prime (Proposition 5.4) so we can find two

polynomials f̂ , ĝ /∈ IV such that f̂ ĝ ∈ IV . The polynomials f̂ and ĝ might not be
homogeneous, but we can split each one as a sum of homogeneous polynomials:

f̂ = f̂d + ...+ f̂0 and ĝ = ĝe + ...+ ĝ0

At least one of the f̂i is not in IV , or f̂ would be in IV . Let s be the smallest
number such that f̂s /∈ IV . Similarly let t be the smallest number such that
ĝt /∈ IV . Since f̂ ĝ ∈ IV every homogeneous summand of f̂ ĝ also lies in IV ; we
saw this in the proof of Lemma 15.13. The summand of degree s+ t is:

(f̂ ĝ)s+t = f̂0ĝs+t + f̂1ĝs+t−1 + ...+ f̂sĝt + ...+ f̂s+tĝ0

In every term except f̂sĝt at least one factor lies in IV by assumption, hence
f̂sĝt must also lie in IV .

Proposition 16.5. A projective variety V ⊂ Pn is irreducible if and only if the
corresponding affine cone V ⊂ An+1 is irreducible.

Proof. If V = V1 ∪V2 then it follows immediately that the cone decomposes as
the union V = V1 ∪ V2 of the cones for V1 and V2. Conversely, suppose that
V is reducible. By the previous lemma we can find homogeneous polynomials
f, g /∈ IV such that fg ∈ IV , then setting V1 = V ∩ V(f) and V2 = V ∩ V(g)
gives a non-trivial decomposition of V.
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Corollary 16.6. Any projective variety decomposes into a finite number of
irreducible components V = V1 ∪ ...∪Vk, and the decomposition is unique up to
ordering.

Proof. Pass to the affine cone V and apply the result for affine varieties (Propo-
sition 5.6).

Definition 16.7. Let V ⊂ Pn be a projective variety. A Zariski-closed subset
of V is a projective subvariety W ⊂ V, and a Zariski open subset of V is the
complement U = V \W of a Zariski-closed subset.

As for affine varieties this defines a topology on V (exercise) called the Zariski
topology.

Lemma 16.8. Let V ⊂ Pn be a projective variety and let Vi ⊂ An be the
intersection of V with one of the standard charts. Then a subset U ⊂ Vi is
Zariski open if and only if U = Vi ∩ U for some Zariski open subset U ⊂ V.

Proof. Exercise.

This says that Vi is a subspace of V in the Zariski topology.

Definition 16.9. A quasi-projective variety is a Zariski open subset of a
projective variety.

Note that An is a quasi-projective variety, because V(xn) ⊂ Pn is Zariski-
closed and its complement is the first standard chart:

An = {xn 6= 0} ⊂ Pn

Moreover if V ⊂ An is any affine variety then it has a projective completion
V ⊂ Pn such that V = V \ V(xn), so V is a quasi-projective variety. It follows
that any quasi-affine variety is also quasi-projective.

We’ve now met four kinds of varieties:

{affine} ⊂ {quasi-affine} ⊂ {quasi-projective} ⊃ {projective}

You many be wondering if there’s a general definition of “variety” of which these
are all special cases. There is indeed such a definition, but it’s quite hard and
not that helpful. In practice most varieties we care about are quasi-projective
so that’s general enough.

Note that most quasi-projective varieties are neither quasi-affine nor projec-
tive.

Example 16.10. Let U = P2 \0:0 :1, this is a quasi-projective variety. It is not
contained in any of the standard charts (or non-standard charts), so it doesn’t
look like it’s quasi-affine. It’s possible to prove that it’s not isomorphic to any
quasi-affine variety, or any projective variety. 4

Now let’s do tangent spaces, singularities, and dimension for projective va-
rieties. The simplest approach is to look at your projective variety in charts:
given a point p ∈ V, choose a standard chart An ⊂ Pn containing p, and look at
the affine variety V = V∩An. Then we already know how to define the tangent
space TpV , so we can use this to define singular points of V, and the dimension
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of V. However, before we can do this we must check what happens if we change
charts.

Let V ⊂ P2 be a projective variety (we’re working in P2 for simplicity but
the same argument will work for Pn). Let’s write V1, V2, V3 for the three affine
varieties we get by intersecting V with the three standard charts, i.e.

V1 = V ∩ {z 6= 0} ⊂ A2
x,y

V2 = V ∩ {y 6= 0} ⊂ A2
x,z

V3 = V ∩ {x 6= 0} ⊂ A2
y,z

Changing charts from the first to the second chart gives the function

Ψ12 : A2
x,y \ V (y)

∼−→ A2
x,z \ V (z)

(x, y) 7→
(
x

y
,

1

y

)
(see exercises). This is an isomorphism of quasi-affine varieties, or a birational
equivalence from A2 to A2. Restricting to V gives an isomorphism

Ψ12 : V1 \ V (y)
∼−→ V2 \ V (z)

between a Zariski open subset of V1 and a Zariski open subset of V2.
Now pick a point p ∈ V lying in {z 6= 0} ∩ {y 6= 0}, so it defines points

p1 ∈ V1 and p2 ∈ V2. Then Ψ12(p1) = p2 so we have a linear isomorphism

(DΨ12)p1 : Tp1V1
∼−→ Tp2V2

(because Corollary 12.17 also holds for regular maps between quasi-affine va-
rieties; see the exercises). Hence dimTp1V1 = dimTp2V2, and p1 is a singular
point of V1 iff p2 is a singular point of V2. Therefore the following definition
makes sense:

Definition 16.11. Let p ∈ V be a point of a projective variety, such that p lies
in the ith standard chart An ⊂ Pn. We say p is a singular point of V if it
gives a singular point of the affine variety Vi = V ∩ An. Otherwise we say p is
a non-singular (or regular) point.

We can also define an integer

dp = dimTpVi

for the point p ∈ V; this is well-defined because it’s independent of which chart
you choose. But defining an actual vector space TpV is a bit more tricky and
we won’t do it.

We can use the function d to give a slightly different characterization of
singular points, in the style of Definition 12.10.

Lemma 16.12. A point p ∈ V is non-singular if and only if there exists a
Zariski open neighbourhood p ∈ U ⊂ V such that dq = dp for all q ∈ U.

Proof. Pick a standard chart p ∈ An ⊂ Pn and let V = V ∩ An be the corre-
ponding affine variety. If such a neighbourhood U exists then U∩V is a Zariski

58



open subset of V and it follows that p is a non-singular point of V . Conversely
if p is a non-singular point of V then there is a Zariski open neighbourhood
p ∈ U ⊂ V on which the function d is constant, and U is also a Zariski open
subset of V by Lemma 16.8.

Recall that for affine varieties the dimension only really makes sense if the
variety is irreducible. If V is an irreducible projective variety then the inter-
section Vi = V ∩ An of V with a standard chart is also irreducible (Proposition
16.2) so we can define

dimV = dimVi

and it doesn’t matter which chart we choose. Equivalently we can define dimV
to be the minimum value of the function d.

Instead of intersecting V with a chart we could look at the affine cone V ⊂
An+1. Recall that V is irreducible iff V is irreducible (Proposition 16.5). Their
dimensions are related as follows:

Proposition 16.13. Let V ⊂ Pn be an irreducible projective variety and let
V ⊂ An+1 be the corresponding affine cone. Then:

dimV = dimV − 1

As we said in the previous section hopefully this is intuitively clear. But the
proof takes a little ingenuity.

Proof. To simplify notation let’s set n = 2 and use co-ordinates x, y, z. The
same proof will work for a general n with co-ordinates x1, ..., xn.

Let V1 ⊂ A2 be the intersection of V with the first standard chart {z 6= 0}.
Points in V1 correspond to points of V lying in the Zariski open subset U =
V \ V (z), i.e. the regular map

F̂ : A3 \ V (z)→ A2

(x, y, z) 7→ (x/z, y/z)

induces a regular map F : U → V1. Now fix a point p ∈ U and let q = F (p) ∈ V1.
Differentiating gives a map:

DFp : TpV → TqV1

We claim that this is a surjection with 1-dimensional kernel. This implies that

dimTqV1 = dimTpV − 1

and since this hold for all points p ∈ U the proposition follows immediately.
First we prove that the kernel of DFp is 1-dimensional. Let (α, β, γ) be

the co-ordinates of our point p. It’s an easy computation that KerDF̂p is 1-
dimensional and spanned by the vector (α, β, γ) ∈ C3; this proves that KerDFp
is at most 1-dimensional, but to know that it is actually 1-dimensional we need
to show that (α, β, γ) lies in TpV .

If f ∈ C[x, y, z] is a homogeneous polynomial of degree k then

x∂xf + y∂yf + z∂zf = kf
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(this is sometimes called Euler’s homogeneous function theorem). In particular
if f vanishes at our point p then the vector (α, β, γ) lies in the kernel of the
derivative Dfp. Since IV can be generated by homogeneous polynomials this
implies that the vector (α, β, γ) ∈ TpV , as required.

Finally we prove that DFp is surjective. Consider the regular map:

Ĝ : A2 → A3 \ V (z)

(x, y) 7→ (γx, γy, γ)

It induces a regular map G : V1 → U such that G(q) = p and F ◦G = 1V1 . Then
the chain rule (Lemma 12.16(ii)) gives that DFp ◦DGq is the identity on TqV1
which means that DFp must be a surjection.

17 Regular and rational functions

Our next task is to define regular functions between projective varieties. As we
shall see they are closely related to rational functions on affine varieties; this is
one of the reasons for developing the theory of rational functions.

Let’s start by thinking about functions from An to P1. Such a function is
something of the form

x 7→ f(x) :g(x)

for scalar functions f and g, and if we want the function to be ‘algebraic’ we
should probably insist that f and g are polynomials. So it looks like we can
get a function An → P1 from a pair of polynomials, and we could write this
function as f :g. But rescaling both sides does nothing, so for any polynomial h

x 7→ h(x)f(x) : h(x)g(x)

defines the same function as f : g. So we are really talking about equivalence
classes (f, g) of polynomials, for the equivalence relation generated by

(f, g) ∼ (hf, hg)

for any polynomial h. This is almost exactly the same thing a rational function
f/g on An.

To see what the difference is, recall that for a rational function ψ = f/g on
An:

(i) A point x ∈ An is a regular point if g(x) 6= 0 (after cancelling common
factors), and ψ defines a regular function An \ V (g)→ C.

(ii) We do not allow g = 0.

Now compare this to our supposed ‘function’ f :g from An to P1.

(i) If g(x) = 0, but f(x) 6= 0, then

f(x) :g(x) = 1:0 ∈ P1

is a perfectly good point in P1. So these points x are OK. Similarly points
x where f(x) = 0 but g(x) 6= 0 are OK. But if f(x) = 0 and g(x) = 0
then our ‘function’ doesn’t make sense.
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(ii) If g = 0 is the zero polynomial but f 6= 0, then f : g is equivalent to
1 : 0, where 1 and 0 here mean constant polynomials. This is fine, it is a
constant function mapping all of An to the point 1:0 ∈ P1.

So our expression f :g does define a function to P1, but only on the open set
An \ V (f, g).

Definition 17.1. A rational function Ψ : An 99K P1 is a pair of polynomials
(f, g), with at least one of f, g non-zero, up to the equivalence relation generated
by

(f, g) ∼ (hf, hg)

for all polynomials h. We write Ψ = f :g for the equivalence class.
A point x ∈ An is called a base-point of Ψ if (after cancelling common

factors in (f, g)) we have f(x) = g(x) = 0. If not x is called a regular point.

Ψ defines an actual function Ψ : An \ {base-points} −→ P1, and the domain
here is a Zariski open set. Note:

• Say Ψ = f :g. Assuming g 6= 0, we have a rational function:

ψ = f/g ∈ C(x1, ..., xn)

If x is a regular point for ψ then it is a regular point for Ψ. But the
converse is not true, because we could have g(x) = 0 but f(x) 6= 0. In
this setting we are allowed points where “ψ(x) =∞”.

• If f 6= 0 then we have a second rational function ϕ = g/f ∈ C(x1, ..., xn),
and if neither f nor g are zero then obviously ϕ = 1/ψ. Clearly a point x
is a regular point for Ψ iff it is a regular point for at least one of ψ and ϕ.

What we’re doing here is choosing either the first or second standard chart
on the target P1, and then trying to write down Ψ as a function from An
to A1. But this function is not defined at base-points of Ψ, and it is also
not defined at points whose image lies outside our chosen chart.

• We could try and generalize this definition by allowing the components
of Ψ to be rational functions instead of polynomials, i.e. considering
expressions of the form:

Ψ =
f1
f2

:
g1
g2

But since we can rescale we can just clear the denominators and get

Ψ = f1g2 : g1f2

so we don’t gain anything.

Example 17.2. The first standard chart is a rational function

A1 99K P1

x 7→ x :1

from A1 to P1. It has no base-points. 4
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Example 17.3. The map ‘quotient by rescaling’

A2 99K P1

(x, y) 7→ x :y

is a rational function, with a single base-point at (0, 0). 4

Example 17.4. Consider the rational function:

Ψ : A3 99K P1

(x, y, z) 7→ xy :xz

At first sight this seems to have base-points on the plane {x = 0} and also on
the line {y = z = 0}. But Ψ is equivalent to y : z, so only the points on the line
are genuinely base-points.

If we write Ψ using the standard charts on P1 we get the two rational func-
tions:

ψ = xy/xz ϕ = xz/xy

∼ y/z ∼ z/y ∈ C(x, y, z)

We can see ψ is regular outside {z = 0} and ϕ is regular outside {y = 0}. 4

It’s easy to generalize this definition to allow the target to be Pk.

Definition 17.5. A rational map Ψ : An 99K Pk is a (k + 1)-tuple of poly-
nomials (f0, ..., fk), with at least one non-zero, up to the equivalence relation
generated by

(f0, ..., fk) ∼ (hf0, ..., hfk)

for all polynomials h. We write Ψ = f0 : ... :fk for the equivalence class.
A point x ∈ An is called a base-point of Ψ if (after cancelling common

factors) we have f0(x) = ... = fk(x) = 0, and a regular point otherwise.

Here are two observations, which we leave as exercises:

• From Ψ we can construct k + 1 rational maps

Φi : An 99K Ak

and x is a regular point of Ψ iff it is a regular point for at least one of the
Φi.

• (f0, ..., fk) and (g0, ..., gk) define the same rational map Ψ iff we have

figj = fjgi

for each i, j ∈ [0, k].

Now let’s think about maps from Pn to Pk. Such a map is exactly the same
thing as a map Ψ : An+1 \ 0 −→ Pk which is invariant under rescaling, i.e.
such that Ψ(λx) = Ψ(x) for all x and λ. To get an (algebraic) map with this
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property we need that the components of Ψ are all homogeneous polynomials
of the same degree d. Because then:

Ψ(λx) = f0(λx) : ... : fk(λx)

= λdf0(x) : ... : λdfk(x)

= f0(x) : ... : fk(x) = Ψ(x) ∈ Pk

You could think of (f0, ..., fk) as defining a regular map F : An+1 → Ak+1, and
then F has the property that the whole line through a point x gets mapped to
the line through the point F (x). So we nearly get a map on the sets of lines,
from Pn to Pk. But this isn’t quite true because there could be base-points: if
F (x) = 0 for some x 6= 0 then the whole line through x gets mapped to the
origin in Ak+1, and we don’t get a point in Pk.

Definition 17.6. A rational map Ψ : Pn 99K Pk is a (k + 1)-tuple (f0, ..., fk)
of homogeneous polynomials of the same degree, with at least one fi non-zero,
up to the equivalence relation generated by rescaling by any homogeneous poly-
nomial h.

We can cancel all common factors to get a ‘minimal’ representative (unique
up to multiplication by a scalar), and we can think of this as a regular map
F : An+1 → Ak+1. A base-point of Ψ is a line which gets mapped to the
origin by F , the other points are regular points. If you fail to cancel common
factors then you’ll miss some regular points. A rational map with no base-points
is called a regular map.

The degree of Ψ is the degree if its component polynomials.

Example 17.7. Consider the rational map of degree one:

Ψ : P1 99K P2

x :y 7→ x :y :0

There is a corresponding regular map F : A2 → A3 sending (x, y) to (x, y, 0),
and the only point that maps to (0, 0, 0) under F is the origin. Hence Ψ has
no base-points, it’s a regular map. Its image is the complement of the third
standard chart. 4

Any rational map Ψ : Pn 99K Pk also defines a rational map Ψ̂ : An+1 99K Pk.
The map Ψ̂ will always have a base-point at the origin (unless it has degree zero),
the other base-points come in lines and correspond to the base-points of Ψ.

Example 17.8. Consider the rational map

Ψ̂ : A2 99K P2

(x, y) 7→ x :y :0

associated to the Ψ from Example 17.7. This Ψ̂ has a unique base-point at the
origin. 4

Let’s look at some other examples of rational maps between projective
spaces.
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Example 17.9. The map

Ψ : P2 99K P1

x :y :z 7→ x :y

has a single base-point at 0:0 :1. 4

Example 17.10. The map

Ψ : P1 99K P2

s : t 7→ s2 : t2 :st

has no base-points, it’s a regular map. The image of this map lies inside the
projective hypersurface V = V(xy−z2) ⊂ P2. We claimed in Example 15.6 that
this V is isomorphic to P1, and we’ll prove soon that this map Ψ is indeed an
isomorphism. 4

Example 17.11. The map

Ψ : P1 99K P3

s : t 7→ s3 :s2t :st2 : t3

is regular, and its image lies in the (projective) twisted cubic:

V = V(xz − y2, yw − z2, xw − yz) ⊂ P3

In fact Ψ is an isomorphism from P1 to V, as we shall see shortly. In Example
12.14 we studied the affine cone on V, we saw that has dimension 2 but cannot
be defined by two polynomials. Similarly V itself has dimension 1, but cannot
be cut out of P3 by less than three polynomials. 4

Example 17.12. Generalizing the previous two examples, we have the Veronese
embedding

Ψ : P1 99K Pn

s : t 7→ sn : sn−1t : ... : tn

which is also regular map. 4

If we have a rational map Φ : Pn 99K Pk and we pick a chart {xi 6= 0} ⊂ Pn
then we get a rational map Φ′ : An 99K Pk by setting the variable xi to 1. At
points where Φ is regular we are simply restricting the function to the chart.
Note that the base-points of Φ′ are exactly the base-points of Φ that lie in our
chosen chart.

Example 17.13. If we write the Veronese embedding in the first chart on P1

we get

Ψ′ : A1 99K Pn

s 7→ sn : sn−1 : ... : 1

which has no base-points. 4
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Example 17.14. Let

Ψ : P2 99K P1

x :y :z 7→ x :y

as in Example 17.9. If we restrict to the chart {y 6= 0} we get

Ψ′ : A2 99K P1

(x, z) 7→ x :1

which has no base-points. But in the chart {z 6= 0} we get

Ψ′′ : A2 99K P1

(x, y) 7→ x :y

which has a base-point at the origin. 4

If we fix a projective variety W ⊂ Pk then it’s easy to define a regular map
from Pn to W; it’s simply a regular map to Pk whose image lies in W. But we
should also be able to pick a projective variety V ⊂ Pn and talk about regular
maps from V to W. This is more complicated.

Example 17.15. Let
V = V(xy − z2) ⊂ P2

as in Example 15.6. In Example 17.10 we wrote down a regular map Ψ : P1 → P2

given by s : t 7→ s2 : t2 :st, and we claimed that Ψ was an isomorphism. Let’s try
and construct the inverse function.

Suppose x : y : z ∈ V and that x 6= 0. Then this point is the image of the
point x :z ∈ P1, because:

x2 :z2 :xz = x2 :xy :xz = x :y :z

This suggests that we consider the rational map:

Φ1 : P2 99K P1

x :y :z 7→ x :z

This map is only regular away from the point 0 : 1 : 0. Unfortunately this point
lies in V, so we only get a function on the Zariski open subset:

U1 = V \ 0:1 :0 = V \ V(x, z) = V \ V(x)

Alternatively suppose x :y :z ∈ V is a point where y 6= 0. Then this point is
the image of z :y ∈ P1, since:

z2 :y2 :yz = xy :y2 :yz = x :y :z

So maybe we should consider the rational map

Φ2 : P2 99K P1

x :y :z 7→ z :y
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which is regular at all points of V except for 1 :0 :0. This Φ2 defines a function
on U2 = V \ 1:0 :0.

These two open sets between them cover the whole of V. What’s more, the
functions Φ1 and Φ2 agree on the overlap U1 ∩ U2. If x :y :z ∈ V and neither x
nor y are zero then:

x :z = xy :yz = z2 :yz = z :y

So we can define a function Φ : V→ P1 by

Φ : x :y :z 7→

{
Φ1(x :y :z) if x :y :z ∈ U1

Φ2(x :y :z) if x :y :z ∈ U2

and this function is the inverse to Ψ. In each open subset the function Φ is the
restriction of a rational function on P2, but there is no single rational function
on P2 that works everywhere. 4

This should remind you of what happened when we studied regular functions
on quasi-affine varieties, like in Example 8.12. There is a good reason for this: a
function from V to P1 is exactly the same thing as a function on the quasi-affine
variety

U = V (xy − z2) \ (0, 0, 0) −→ P1

which is invariant under rescaling. Our Zariski open subsets correspond to a
cover U = U1∪U2, where we cut out V (x) or V (y). However, note that we have
not defined a function from U to A2. If you think of Φ1 and Φ2 as functions
to A2 then they do not agree on the overlap U1 ∩ U2; they only agree once we
quotient by rescaling in the target.

Now we can give the definition of a regular map between two projective
varieties, just by copying Definition 8.13.

Definition 17.16. Let V ⊂ Pn and W ⊂ Pk be projective varieties. A function
Ψ : V→W is regular if there exists a finite cover

V = U1 ∪ ... ∪ Ut

of V by Zariski open subsets, and rational functions Ψi : Pn 99KW, such that for
every i the rational function Ψi is regular at all points of Ui and Ψi|Ui ≡ Ψ|Ui .

Now we know what it means for two projective varieties to be isomorphic.

Example 17.17. Let V = V(z) ⊂ P2 and let:

Ψ : P2 99K P1

x :y :z 7→ x :y

Ψ only has a base-point at 0:0 :1 so it is regular at every point of V. Hence its
restriction to V defines a regular map Ψ : V → P1. In this example we do not
need to split V up into open subsets.

Obviously Ψ is the inverse map to the inclusion P1 ↪→ P2 from Example
17.7, this proves that V is isomorphic to P1. 4
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Example 17.18. Let V = V(xy−z2) ⊂ P2, and let Φ : V→ P1 be the function
we constructed in Example 17.15. Then Φ is a regular map. It is the inverse
to the regular map Ψ : P1 → V from Example 17.10, which shows that V is
isomorphic to P1. As promised! 4

Example 17.19. Let V be the twisted cubic

V = V(xz − y2, yw − z2, xw − yz) ⊂ P3

and let Ψ be the regular map

Ψ : P1 99K V
s : t 7→ s3 :s2t :st2 : t3

from Example 17.11. Now consider the following two rational functions:

Φ1 : P3 99K P1 Φ2 : P3 99K P1

x :y :z :w 7→ x :y x :y :z :w 7→ z :w

Φ1 defines a function on the open set U1 = V\V(x, y) and Φ2 defines a function
on the open set U2 = V \ V(z, w). Clearly U1 and U2 cover V.

We leave it as an exercise to check that Φ1 and Φ2 agree on U1 ∩ U2, and
that the resulting regular function is the inverse to Ψ. This shows that V is
isomorphic to P1. 4

The previous example generalizes to the Veronese embedding of any degree
(Example 17.12).

We’ve now defined regular maps between two projective varieties V and W
but we haven’t defined rational maps in this generality. We’re not going to do
it, but hopefully it’s clear that we could define a rational map to be a ‘partially
defined regular map’ in the style of Definition 11.2. Of course we must assume
that V is irreducible.

If V is irreducible then the affine cone V ⊂ An+1 is also irreducible (Propo-
sition 16.5) so there should be a second approach to rational maps based on the
function field C(V ), in the style of Definition 11.1. We’re not going to do this
either, but let’s look at an example to get an indication of how this approach
works.

Recall that a rational map f :g from A3 to P1 defines two rational functions
f/g and g/f in C(x, y, z), and a point is a base-point for f : g when it is not
regular for either of these rational functions.

Example 17.20. The affine cone associated to the projective hypersurface
V = V(xy − z2) ⊂ P2 is the ODP singularity:

V = V (xy − z2) ⊂ A3

In the field C(V ) we have a rational function:

φ =
x

z
=
z

y
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This is obviously regular on the set V \ V (y), and in fact this is exactly the set
of regular points (see exercises). The reciprocal of φ is

1

φ
=
z

x
=
y

z

which is regular on V \ V (x). The only point where neither are regular is the

origin. So it looks like we have a rational map Φ̂ : V 99K P1 which we can
express either as

Φ̂ : x :y :z 7→ x :z or Φ̂ : x :y :z 7→ z :y

and that Φ̂ only has a base-point at the origin.
The components of Φ̂ are homogeneous and all of the same degree, so there

should be an induced rational map

Φ : V 99K P1

on the projective variety. And since Φ̂ was regular away from the origin, Φ
should be a regular map. 4

If you define everything properly then the argument in the above example
is valid, and produces the regular map Φ from Example 17.15.

18 Plane curves

A hypersurface V = V(f) in P2 is called a (projective) plane curve. The degree
of V means the degree of the defining polynomial f .

Plane curves of degree 1 are very easy. A polynomial f of degree 1 is exactly
a linear map f : C3 → C, and after changing basis you can assume that f = z.
So V(f) ∼= V(z), and this is isomorphic to P1 as we verified in Example 17.17.

What about curves of degree 2? One example is:

V = V(xy − z2) ⊂ P2

We proved in Example 17.18 that this V is also isomorphic to P1. But this is
essentially the only example of a degree 2 curve! Because...

A brief digression on quadratic forms

A homogeneous polynomial of degree 2 is called a quadratic form. Quadratic
forms in n variables are the same thing as symmetric n×n matrices, for example
in 2 variables a general quadratic form can be written as

f(x, y) = ax2 + bxy + cy2 =
(
x y

)( a b/2
b/2 c

)(
x
y

)
and the quadratic form xy − z2 can be written as:

xy − z2 =
(
x y z

) 0 1/2 0
1/2 0 0
0 0 −1

xy
z
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In general a quadratic form can be written as f(x) = xTQx, where x here
denotes a column vector, for a unique symmetric matrix Q.

Now suppose we perform a linear change-of-co-ordinates (a change of basis):

x′ = Ax

In the new co-ordinates our quadratic form becomes:

g(x′) = f(A−1x′) = x′
T
A−TQA−1x′

Example 18.1. Let f(x, y, z) = x2 + y2 + z2, this is the quadratic form asso-
ciated to the 3× 3 identity matrix I. Change co-ordinates to:x′y′

z′

 =

x+ iy
x− iy
iz

 =

1 i 0
1 −1 0
0 0 i

xy
z

 = A

xy
z


The quadratric form becomes

g(x′, y′, z′) =
(
x′ y′ z′

)
A−TA−1

x′y′
z′

 = x′y′ − (z′)2

(the inverse transformation is easier to verify). 4

So quadratic forms up to changes-of-basis are the same thing as symmetric
matrices up to congruence:

Q 7→ ATQA

Proposition 18.2. Any symmetric complex matrix Q is congruent to a diagonal
matrix

Q′ = diag(1, 1, ..., 1, 0, ..., 0)

where the number of 1’s is the rank of Q.

Proof. Gram-Schmidt algorithm.

You might be more familiar with the real version of this result, Sylvester’s
Law of Inertia. It states that symmetric real matrix is congruent to a diagonal
matrix diag(1, ..., 1,−1, ...,−1, 0, ..., 0), so real quadratric forms have two invari-
ants, the rank and the index. Over the complex numbers we can multiply by i
so we can change the −1’s to 1’s.

Now we can apply this result to understand plane curves of degree 2.

Corollary 18.3. Let V = V(f) ⊂ P2 be a plane curve of degree 2. Then up to
a linear co-ordinate change, either:

(i) f(x, y, z) = xy − z2

(ii) f(x, y, z) = xy

(iii) f(x, y, z) = x2
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The three cases correspond to the rank of f being 3, 2 or 1. In case (i) we’ve
shown V is isomorphic to P1. This case is typical, because ‘most’ 3× 3 matrices
have rank 3. In algebraic geometry we say case (i) is generic.

We looked at case (ii) in Example 16.3, here V is the union of two copies of
P1, meeting at a single point.

Case (iii) is really a curve of degree 1, because V(x2) = V(x), so V is iso-
morphic to P1.

We’ve seen that all plane curves of degree 1, and all (generic) plane curves
of degree 2, are isomorphic to P1. Topologically, this means they look like the
2-sphere. What can we say about plane curves of higher degree?

Fact: If f is generic (i.e. almost always) the plane curve V(f) has no singular
points. It is a real 2-dimensional oriented manifold.

Topologically, V(f) is a closed oriented surface. There are not very many
of these, one of the big theorems of 19th century geometry is that they are
classified by their genus: the 2-sphere has genus 0, the torus has genus 1, a
‘torus with two holes’ has genus 2, etc. Here is a very nice theorem, which
unfortunately we won’t prove:

Theorem 18.4 (Degree-genus formula). If V = V(f) ⊂ P2 is a generic plane
curve of degree d then V is a surface of genus:

g = 1
2 (d− 1)(d− 2)

This theorem shows a beautiful interplay between algebra and topology. It’s
the baby case of a deeper theorem called the Riemann-Roch theorem, which is
arguably the single most important result in algebraic geometry.

If you plug in d = 1 or d = 2 you get that V ∼= S2, as we’ve already seen.
The case d = 3 is about elliptic curves, it says that they have genus 1, so
topologically an elliptic curve is a torus. If we set d = 4 then we get a surface
of genus 3.

Not every value of g can occur, we don’t get g = 2 for example. But this
doesn’t mean that these surfaces don’t show up as projective varieties; it just
means you need to look inside Pn for n > 2, so they’re no longer hypersurfaces.
If we do this then it’s possible to find surfaces of any genus.

19 Multi-projective space

Some nice geometry arises when we think about products of projective spaces,
for example:

P1 × P1 =
{

(p, q), p, q ∈ P1
}

=

{
(x, y, s, t), (x, y) 6= (0, 0), (s, t) 6= (0, 0)

}
(x, y, s, t) ∼ (λx, λy, µs, µt), ∀λ, µ ∈ C∗

We can cover P1 × P1 with four ‘standard charts’, e.g. the subset

{y 6= 0, t 6= 0} ⊂ P1 × P1

bijects with A2, using the map:

(x :y, s : t) 7→ (x/y, s/t)
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This chart misses the set

1 :0× P1 ∪ P1 × 1:0

which is a union of two P1’s meeting at the single point (1 :0, 1:0).
We can get subvarieties in P1 × P1 from affine varieties in A4 which are

invariant under both rescaling operations, the λ one and the µ one. This means
that the defining polynomials must be homogeneous in the (x, y) variables (with
some degree d1) and also homogeneous in the (s, t) variables (with some degree
d2). We say such a polynomial has bidegree (d1, d2).

Example 19.1. Let f(x, y, s, t) = x2s3 + 2xyst2 − y2t3. Every term in f has
degree 2 in (x, y) and degree 3 in (s, t), so f has bidegree (2, 3). It follows that:

f(λx, λy, µs, µt) = λ2µ3f(x, y, s, t)

So the set V (f) ⊂ A4 is invariant under both rescaling operations, and gives us
a well-defined subset:

V(f) ⊂ P1 × P1

Note that this is not the product of two projective varieties V1,V2 ⊂ P1, because
that would have to be a finite set. It’s not the product of any two subsets of P1.

Fact: if f is a generic polynomial of bidegree (2, 3) then V(f) is topologically
a surface of genus 2.

4

Clearly we could generalize the whole theory of projective varieties to “multi-
projective varieties”. But it turns out that you don’t get anything new. Here’s
why.

Example 19.2. The following map is called the Segre embedding :

F : P1 × P1 −→ P3

(x :y, s : t) 7→ xs :xt :ys :yt

This is a regular map, because if we look at the associated rational map

F̂ : A4 99K P3

it only has base-points where (x, y) = (0, 0) or (s, t) = (0, 0), and these are not
points in P1 × P1.

Let’s write a : b : c :d for the co-ordinates on the target P3. The image of F
is obviously contained in the hypersurface:

V = V(ad− bc) ⊂ P3

We claim that F is actually an isomorphism from P1 × P1 to V.
To see this, consider the rational maps:

Φ1 : P3 99K P1 Φ2 : P3 99K P1

a :b :c :d 7→ a :c a :b :c :d 7→ b :d
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The regular points of Φ1 and Φ2 together cover the whole of V (in fact the whole
of P3), and at any point in V where both maps are regular they give the same
answer. So together they define a regular map:

Φ : V −→ P1

This should look familiar, it’s just another point-of-view on Examples 8.12 and
9.2.

In a similar way we can define a regular map Ψ : V −→ P1 which is given
by:

Ψ : a :b :c :d 7→

{
a :b if (a, b) 6= (0, 0)

c :d if (c, d) 6= (0, 0)

The product of Φ and Ψ defines a regular map from V to P1 × P1, and it’s easy
to verify that this map is the inverse to F . Hence P1 × P1 is isomorphic to
V. 4

It follows that a “multi-projective variety” in P1 × P1 is always going to
be isomorphic to some projective variety in P3. The Segre embedding can be
generalized to the map

Pn × Pk ↪→ P(n+1)(k+1)−1

(x0 : ... :xn, s0 : ... :sk) 7→ x0s0 :x0s1 : ... :xnsk

which an isomorphism onto its image. So any “multi-projective variety” can be
written as a projective variety.

A by-product of the previous example is that we now understand all degree
two hypersurfaces in P3, i.e. all projective varieties of the form

V = V(f) ⊂ P3

where f is a quadratic form in x, y, z, w. This kind of V is called a quadric
surface.

Assuming f has rank 4 (which is the generic case) Proposition 18.2 tells us
that we can change basis to make f = xy − zw, and then Example 19.2 shows
that V is isomorphic to P1 × P1.

There are three more ‘increasingly degenerate’ cases, where f has rank 3, 2
or 1:

(3) Here we can change basis to make f(x, y, z, w) = xy − z2. This surface
has a singular point at 0 :0 :0 :1 which looks like the ODP singularity, and
contains a copy of P1 at w = 0 (see exercise sheets).

(2) Here we can assume f = xy. Then V = V(x) ∪ V(y) which is two copies
of P2, meeting along a P1 = V(x, y).

(1) Here f = x2, so V = V(x) ∼= P2.
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20 Blow-ups

Consider the space

A2 × P1 =

{
(x, y, s, t), (s, t) 6= (0, 0)

}
(x, y, s, t) ∼ (x, y, λs, λt), ∀λ ∈ C∗

This is a Zariski open set in P2×P1, so using the Segre embedding it’s a quasi-
projective variety in P5.

Subvarieties in this space are cut out by polynomials in C[x, y, s, t] which
are homogeneous in (s, t). An important example is:

B = V(xt− ys) ⊂ A2 × P1

There is a regular map:

π : B −→ A2

(x, y, s : t) 7→ (x, y)

What are the fibres (level sets) of π? Fix a point (x, y) ∈ A2, then π−1(x, y) is
the set of points s : t ∈ P1 satisfying:

xt− ys =
(
−y x

)(s
t

)
= 0

If (x, y) 6= (0, 0) this linear map has a 1-dimensional kernel so then there is a
unique line of solutions, namely s : t = x :y, the line through (x, y). So π−1(x, y)
is the single point (x, y, x :y).

But if (x, y) = (0, 0) then s : t can be anything, so π−1(0, 0) = (0, 0) × P1.
Over (0, 0) the fibre of π jumps from being a single point to the whole of P1.
From this, we see another way to describe B is:

B =
{

(x, y, s : t) ∈ A2 × P1, (x, y) ∈ s : t
}

A point in B consists of a line in C2, plus a point lying on that line. The map π
just forgets the line s : t and remembers the point (x, y). If (x, y) 6= (0, 0) then
there’s a unique line through (x, y), but if (x, y) = (0, 0) then it lies on all lines.

The space B looks like A2, except that the origin has been replaced with a
copy of P1. We call B the blow-up of A2 at (0, 0).

We can understand some more about B by looking in charts. There are two
standard charts on A2 × P2, namely {s 6= 0} and {t 6= 0}. In the first chart B
becomes:

V (xt− y) ⊂ A3
x,y,t

This is the graph of a function, so it’s isomorphic to A2. Similarly in the second
chart B becomes

V (x− ys) ⊂ A3
x,y,s

which is also isomorphic to A2. So B has no singular points, and it is two copies
of A2 glued together somehow.

Using these charts it’s easy to see that the map π is an isomorphism:

π : B \ V (x, y)
∼−→ A2 \ (0, 0)
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In fact π is a birational equivalence between B and A2, but we leave it as an
exercise to write down the rational inverse.

If you construct B over the real numbers instead then the space you get is
an infinite Möbius strip. See if you can visualise this.

Now let’s see what effect replacing A2 with B has on subvarieties V ⊂ A2.

Example 20.1. Let V = V (xy) ⊂ A2, the node. Now let W = π−1(V ) ⊂ B.
What is W?

Points in V are either

• (x, 0) with x 6= 0. Then π−1(x, 0) = (x, 0, 1:0) ∈ B, a single point.

• (0, y) with y 6= 0. Then π−1(0, y) = (0, y, 0:1) ∈ B, a single point.

• (0, 0). Then π−1(0, 0) = (0, 0)× P1 ⊂ B.

Indeed:

W = V(xt− ys, xy) ⊂ A2 × P1

= V(x, ys) ∪ V(y, xt)

= V(x, s) ∪ V(x, y) ∪ V(y, t)

= {(0, y, 0:1)} ∪ {(0, 0, s : t)} ∪ {(x, 0, 1:0)}

The first and third irreducible components are copies of A1, and the second is a
copy of P1. The first two meet at the point (0, 0, 0:1) and the second two meet
at (0, 0, 1:0). The map π just collapses the P1 component down to (0, 0). 4

Now take any affine variety V ⊂ A2 with (0, 0) ∈ V . Then W = π−1(V ) ⊂ B
contains V(x, y) = P1. Usually W will be reducible, and this P1 is one of
the irreducible components (as in the example above). We define the proper
transform of V to be the union of the remaining irreducible components (to
be more precise, it’s the Zariski-closure of π−1(V ) \ V(x, y)).

The larger variety W is sometimes called the total transform of V .

Example 20.2. The proper transform of V = V (xy) ⊂ A2 is:

W′ = V(x, s) ∪ V(y, t) ⊂ B

This is a disjoint union of two copies of A2. Note that W′ ∩ V(x, y) is the two
points 0 :1, 1 :0 ∈ P1. These are the two lines that lie in V . When we form the
proper transform of V we pull the two lines apart, and we get a variety which
has no singular points. 4

What happens if V is not a cone?

Example 20.3. Let V = V (y2 − x3) ⊂ A2, the cusp singularity. The total
transform of V is:

W = π−1(V ) = V(xt− ys, y2 − x3) ⊂ A2 × P1

We claim that W splits as two irreducible components:

W = V(x, y) ∪ V(xt− ys, t2 − s2x)

We can check this claim by looking in charts.
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• In {s 6= 0} we have

V (xt− y, y2 − x3) = V (xt− y, x2t2 − x3)

= V (x, y) ∪ V (xt− y, t2 − x) ⊂ A3
x,y,t

which agrees with our claim (to see the final equality note that if x = 0
then y = 0 and if x 6= 0 then t2 = x). Inside this chart we can see two
non-singular irreducible components meeting at the single point (0, 0, 0).

• In {t 6= 0} we have:

V (x− ys, y2 − x3) = V (x− ys, y2 − y3s3)

= V (x, y) ∪ V (x− ys, 1− ys3) ⊂ A3
x,y,s

In this chart we see two non-singular irreducible components, and they’re
disjoint.

So the proper transform of V is:

W′ = V(xt− ys, t2 − s2x) = B ∩ V(t2 − s2x) ⊂ A2 × P1

From the charts we see that W′ has no singular points. Also note that:

(i) The intersection W′ ∩ V(x, y) is the single point 1 : 0 ∈ P1. This is the
unique line in A2 which is tangent to V at the point (0, 0).

This observation generalizes to any V ⊂ A2. The intersection of the proper
transform of V with the P1 lying over (0, 0) is exactly the set of lines that
are tangent to V at the origin. So to get the proper transform we delete
the point (0, 0) from V , and replace it with the set of tangent lines. You
should compare this to the process of projective completion, where we
added in the set of lines that were tangent to V ‘at infinity’.

(ii) In fact W′ is contained inside the chart {s 6= 0} (because setting s = 0 in
the equations for W′ forces t = 0, and s = t = 0 is impossible). So W′ is
the affine variety in A2

x,y,t cut out by:

W′ = V (xt− y, t2 − x) = V (y − t3, x− t2)

Evidently W′ is isomorphic to A1, using the map t 7→ (t2, t3, t). The map
π is actually the map

A1 −→ V

t 7→ (t2, t3)

which we’ve seen before (Example 6.12).

4

In both the previous examples (the cusp and the node) we found that the
proper transform W′ of V was non-singular and the map

π : W′ → V

is an isomorphism away from the singular points of V . A map like this is called
a resolution of singularities, and they’re very useful.
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Example 20.4. For a final example, let’s use blow-ups to construct a resolution-
of-singularities for the ODP singularity V = V (xy − z2) ⊂ A3.

First we must define the blow up of A3 at the origin. Extrapolating from
the A2 case, the space we’re looking for is:

B =
{

a line s : t :u ∈ P2 and a point (x, y, z) ∈ A3 lying on s : t :u
}

The equations defining B are:

B = V(xt− ys, xu− zs, yu− zt) ⊂ A3
x,y,z × P2

s:t:u

These are the determinants of the three maximal minors of ( x y zs t u ), and they
vanish exactly when the rows are collinear. If we examine B in the chart {s 6= 0}
we get

V (xt− y, xu− z, yu− zt) ⊂ A5
x,y,z,t,u

which is isomorphic to A3 (the third equation is redundant). The other two
charts look similar, so B has no singular points, and consists of three copies of
A3 glued together.

We have a regular map

π : B −→ A3

(x, y, z, s : t :u) 7→ (x, y, z)

which just forgets the line. If (x, y, z) 6= (0, 0, 0) there is a unique line through
this point, so π−1(x, y, z) is the single point (x, y, z, x :y :z). But π−1(0, 0, 0) is
the whole of P2.

Now let V = V (xy − z2) ⊂ A3. The total transform of V is

π−1(V ) = B ∩ V(xy − z2) ⊂ A3 × P2

and we claim this the union of two irreducible components:

π−1(V ) = V(x, y, z) ∪
(
B ∩ V(st− u2)

)
This can be verified in charts (exercise). The first component is the P2 lying over
the origin in A3, the second component is (by definition) the proper transform
W′ of V . We leave it as another exercise to check that W′ has no singular points.

We know that the map π : W′ −→ V is a bijection away from the origin in
V . But at the origin we have

π−1(0, 0, 0) = V(x, y, z) ∩W′ = V(st− u2) ⊂ P2

which is a degree 2 plane curve, and know it is isomorphic to P1.
So in this construction we replace the singular point in V with a copy of P1,

and we get the non-singular quasi-projective variety W′. 4
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A Technical results on regular functions

Let U ⊂ An be a quasi-affine variety. In Definition 8.13 we said that a function
F : U → C was regular if we can cover U by Zariski open subsets U1, ..., Uk and
in each one find a rational function fi/gi which agrees with F .

But now suppose that U is a Zariski open subset of An. In this case we have
a simpler definition of a ‘regular function’ on U (Definition 8.7), we said it was
just a rational function f/g such that g doesn’t vanish anywhere in U . Since
we have two competing definitions here, we must prove that they’re equivalent.

Lemma A.1. Let U ⊂ An be a Zariski open subset. Suppose F : U → C is a
regular function in the sense of Definition 8.13. Then there is a single rational
function f/g ∈ C(x1, ..., xn) such that g doesn’t vanish on U and F = (f/g)|U .

Proof. By assumption we have a Zariski open cover U = U1∪...∪Uk and rational
functions fi/gi ∈ C(x1, ..., xn) such that F |Ui

= (fi/gi)|Ui
. Pick any two i and

j. Then Ui ∩ Uj is a non-empty Zariski open subset of An by Lemma 7.6. The
polynomial

figj − fjgi
vanishes on Ui∩Uj , so it vanishes on the Zariski-closure of Ui∩Uj , and by Lemma
7.11 this is the whole of An. So figj−fjgi is actually the zero polynomial, hence
fi/gi and fj/gj are equivalent rational functions in C(x1, ..., xn), and if we write
them both in lowest terms we get the same expression f/g. Moreover g cannot
vanish at any point in Ui ∪Uj . Since this holds for any i, j we see that g cannot
vanish in U , and F is the restriction of f/g.

Now suppose instead that V ⊂ An is an affine variety. In this case we again
have two competing definitions of a ‘regular function; on V : the complicated
one in Definition 8.13, and the simpler one where a regular function is the just
the restriction of a polynomial (Definition 4.1). So we must prove that these
two definitions are equivalent.

Lemma A.2. Let V ⊂ An be an affine variety, and let F : V → C be a regular
function in the sense of Definition 8.13. Then there are polynomials f1, ..., fk
and g1, ..., gk such that

U1 = V \ V (g1), ..., Uk = V \ V (gk)

form a Zariski open cover of V , and such that

F |Ui
≡ (fi/gi)|Ui

for each i.

This looks just like Definition 8.13 except that each Ui is not an arbitrary
open set, it’s the complement of V (gi).

Proof. By assumption we can find a Zariski open cover U1, ..., Uk of V such
that on each piece of the cover F agrees with some rational function f̂i/ĝi ∈
C(x1, ..., xn). We can assume that each Ui is of the form

Ui = V \ V (hi)
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for a polynomial hi; this is because every Zariski open subset is a finite union
of subsets of this form, so we can make it true by refining our open cover.

Consider the polynomial ĝ1. By assumption it does not vanish at any point
in U1 = V \ V (h1)). So if ĝ1(x) = 0, and x ∈ V , then h1(x) = 0. This says that
h1 vanishes on the affine variety V ∩ V (ĝ1). Nullstellensatz (Theorem 3.8) tells
us that we can write

hk1 = p+ qĝ1

for some p ∈ IV , some k ∈ N, and some polynomial q. So inside the set U1 we
have:

F |U1
≡ f̂1
ĝ1

∣∣∣∣∣
U1

≡ qf̂1
hk1

∣∣∣∣∣
U1

Since U1 = V \ V (h1) = V \ V (hk1), if we set f1 = qf̂1 and g1 = hk1 then we
have expressed F in the required form within U1. We can do the same in each
Ui.

Proposition A.3. Let V ⊂ An be an affine variety, and let F : V → C
be a regular function in the sense of Definition 8.13. Then there is a single
polynomial f ∈ C[x1, ..., xn] such that F = f |V .

So Definitions 8.13 and 4.1 agree for affine varieties.

Proof. By Lemma A.2 we can cover V by open sets Ui = V \ V (gi) and find
polynomials fi such that F is given by fi/gi inside Ui. Pick any two i and j
and consider the intersection:

Ui ∩ Uj = V \ V (gigj)

The expressions fi/gi and fj/gj define the same function in this subset, so the
polynomial figj − fjgj vanishes in this subset, which implies that

(figj − fjgi)gigj = figig
2
j − fjgjg2i

vanishes at all points of V .
Now the intersection V ∩ V (g21 , ..., g

2
k) is empty because the Ui cover V . By

Weak Nullstellensatz (Corollary 3.13) we can find polynomials h0, h1, ..., hk with
h0 ∈ IV such that:

h0 + h1g
2
1 + ...hkg

2
k = 1 (A.4)

We set f to be the polynomial

f = f1g1h1 + ...+ fkgkhk

and we claim that F is the restriction of f .
To see the claim take a point x ∈ U1. Here F (x) = f1(x)/g1(x), so multi-

plying by (A.4) we get:

F |x =

(
f1h1g1 +

f1h2g
2
2

g1
+ ...+

f1hkg
2
k

g1

)∣∣∣∣
x

= f |x

If we take x in any other Ui we get the same result.
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